Dynamic Sketches :
 Coarse to fine modeling of 3D shapes in motion

Pauline Olivier
LIX, Ecole Polytechnique, France

Objectives

- General methodology
- Fast creation + progressive refinement of 3D shapes in motion
- Implementation in WebGL application prototype

State of the art

- Modeling
- Sketch-based modeling, Implicit surfaces
- Animation
- Line of action, gesture-based control
- Distributions
- Pair Correlation Function (PCF)
- Illustrative visualization
- Non-Photorealistic rendering

State of the art : Modeling

$$
I=\{P / f(P)=c\}
$$

$f: R^{3} \rightarrow R$ scalar field
Implicit skeleton surfaces

Convolution surfaces to avoid bumping effect

$$
\begin{aligned}
& F(P)=\int_{S} r(s) f_{S}(P) d s \\
& \mathbb{N}
\end{aligned}
$$

[Bernhardt et al., SBIM 2008]

[Zanni et al. CGF 2013]

State of the art : Animation

[Guay et al. 2013, 2015]
[Delame et al. 2013]

State of the art : Distributions

[Eccormier-Nocca et al. Eurographics 2019]

State of the art : Illustrative Renderina

[Owada et al. 2004]

[Bruckner et al. 2005]

(a)

Image courtesy of Nucleus Medical Art

State of the project :

Expressive modeling for architecture

Motivation : Creativity in architecture

2 extreme design processes

- Free-hand sketching suggesting 3D surfaces mental image of the model
- BIM (Revit) combination of volumes geometric primitives

Pre-study professional architecture agency SCAU Paris

Main criteria :
(C1) Immediate usability
Coarse to fine design

- (C2) Both outside and inside

Free-form shapes

- (C3) Keep the original strokes

Uncertainty

- (C4) Exploration

3D navigation

State of the art : Sketching in Computer Graphics for architecture applications

2 goals:

- Inferring a 3D model (knowledge)

Sketching Reality
[Chen et al. SIGGRAPH 2008]

- Creating a 3D sketch (without model)

State of the art : Sketching in Computer Graphics for architecture applications

	C1 Immediate Usability	C2 Both inside/outside	C3 Keep original strokes	C4 Uncertainty exploration
Inferring 3D model - Sketching Reality -Sketching Procedural	O	N	N	N
3D sketch -Mental Canvas -Insitu	O	N	O	N

Goal of our research

- Creating a 3D sketch (without model)

[^0]
Insitu

[Paczkowski and al. SIGGRAPH Asia 2011]

Our method

New concept of Nested Explorative Maps

Contributions

1) Nested structure for coarse to fine, free form design

- From the outside to the inside
- While keeping the original strokes

2) Uncertainty

- Interactive exploration of options

Validation
User study with professional architects

N.E.M.

1) NEM : editing modes

Map sketching mode

- Freehand strokes

Nested footprint mode

- Spline for smooth canvas
- Play on stroke's speed
- Volume from closed curve

Floor mode

- Volume required

Cutting mode

- Freehand cutting line

1) Nested structure

Challenge: Free form canvases built from and carrying original user strokes

Our solution : hybrid hierarchy

Map

- User strokes
- Texture expressing uncertainty

NEM = Nested Explorative Maps

2) Uncertainty: Challenges

Uncertainty represented through

- lighter strokes
- over-sketching

Goal: enable explorative options
No existing solution to explore options

General idea: High stroke density => confidence region

2) Uncertainty: Confidence field from a set of strokes

Solution: Creating a confidence field stored as a texture, footprints navigation

S_{i}, thickness α

$$
\kappa(p, s)=\frac{1}{d(p, s)^{3}}
$$

Method

Map = set of strokes + confidence fie
Inspired from convolution surfaces : strokes \leftrightarrow skeletons generating a fiel

$$
F_{i}(p)=\int_{S_{i}} \alpha \kappa(p, s) \mathrm{d} s
$$

Incremental update $F=\sum F_{i}$

2) Uncertainty
 Plastic deformation of footprints and canvases

Input : Confidence texture
Footprint $=$ mass-particles + plastic springs
Attraction towards high confidence

$$
\begin{aligned}
& P_{\text {attraction }}(p)=\exp \left(-(F(p) / \sigma)^{2}\right) \\
& F_{\text {attraction }}(p)=-\nabla P_{\text {attraction }}(p)
\end{aligned}
$$

Plastic spring
Small elongation Large elongation
Absorbs deformation (rest length changes)

$$
\mathrm{L}_{0} \leftarrow \mathrm{~L}
$$

Part B: Exploration Tools

Validation: User study at the SCAU agency

Visual references

Created by professional architects (~10 minutes, WACOM tablet)

User study at the SCAU agency

17 professionals, from 6 months to 40 years of experience

Global result of the survey

Conclusion NEM

- Architects needs + state of the art
- Concept of Nested Explorative Maps :
- Recursive creation of a 3D sketch

- Interactive exploration of options
- Limitations
- Limited functionnalities in our prototype
- Not fully free form

- Future work
- Extension to more general goals

In process: General methodology

- Contributions

- Skeleton and fibers distribution in the 3D space
- Sketch-based animation
- Addition of knowledge and constraints on the fly
- Rendered in illustration style
- Navigation at different resolutions

Thank you for your attention!

Code online at : www.lix.polytechnique.fr/geovic/software.html

User Study - Comparison Industrial software

Immediate usability NEM compared to industrial software

User Study - Comparison Industrial software

Better for creation NEM compared to industrial software

[^0]: + (C1) Immediate usability
 + (C2) Both outside and inside
 + (C3) Keep original user strokes
 + (C4) Uncertainty exploration

