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1 Arithmetic Rambles
Started with studying g(n) = gcd(n, σ(n)), where

σ(n) =
∑
d|n

d.

For any function f : Z+ → Z+, we can look at the average order of f , defined
as g if

x∑
n=1

f(n) ≈
x∑
n=1

g(n)

as x→∞
Looking at the distribution of g(n) shows a major right-skew.

The first is with x = 100 and the second is x = 1000 and any higher pretty
much just looks like a single bar at the beginning.

The following is a plot for x = 105.
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A good estimate for
∑
n≤x

g(n) is x1.256.

Which leads to the following question.

Question 1 Can we show for any θ ∈ (0, 1) (θ > 1/3 for example) that∑
n≤x

g(n) < x1+θ

for large enough x.

Let’s list a few known average orders.

1.
∑
n≤x

d(n) ≈
∑
n≤x

log(n)

2.
∑
n≤x

σ(n) ≈ π2

6
∑
n≤x

n

3.
∑
n≤x

ω(n) ≈
∑
n≤x

log(log(n))

4.
∑
n≤x

Ω(n) ≈
∑
n≤x

log(log(n))

5.
∑
n≤x

Λ(n) ≈
∑
n≤x

1 (equiv. to PNT)

6.
∑
n≤x

µ(n) ≈
∑
n≤x

0 (equiv. to PNT)

To try and understand Prob(g(n) = 1), we look to the proof that the prob-
ability that two integers are coprime is 1

ζ(2) .

∑
n,m≤x

gcd(n,m)=1

1 =
∑

m,n≤x

∑
d| gcdn,m

µ(d) =
∑
d≤x

∑
r,s≤x/d

µ(d) =
∑
d≤x

µ(d)bx/dc2.
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The first equality comes from the fact that
∑
d|n

µ(d) is 1 if n = 1 and 0

otherwise. So we can use it to extract the property gcd(n,m) = 1.
The second equality comes from reversing the order of summation. For all

divisors d ≤ x, we can choose any pair r, s ≤ x/d and we know that dr, ds ≤ x
and d| gcd(dr, ds).

The third equality then comes from counting the number of pairs r, s, of
which there are bx/dc2. To continue, we write bx/dc2 = (x/d)2 + O(1), using
big-O notation. Then∑

d≤x

µ(d)bx/dc2 = x2
∑
d≤x

µ(d)
d2 +

∑
d≤x

µ(d)O(1) = x2

ζ(2) + Error

Trying a similar trick with g(n) = 1 gets us to∑
n,m≤x
g(n)=1

1 =
∑

m,n≤x

∑
d|(n)

µ(d) =
∑
d≤x

∑
r≤x/d
d|g(rd)

µ(d).

But we get stuck because it’s not true that all r ≤ x/d has d|g(rd). But R.R
Hall’s On the probability that n and f(n) are relatively prime III goes
a bit further, writing

∑
d≤x

∑
r≤x/d
d|g(rd)

µ(d) =
∑
d≤ω

µ(d)
∑
m≤x/d

gd(m)=−g(d) mod d

1 + θ
∑

ω<d<x

∑
m≤x/d
d|g(md)

1 = S1 + θS2,

where gd(m) = g(md) − g(d) and −1 < θ < 1. He proceeds to analyze S1 and
S2. We have gd(m) = −g(d) mod d iff g(md) = 0 mod d, so it encodes the same
information, but he notes that he introduces gd(m) over g(dm) as it has the
advantage of being additive.

For me, all of this is motivated by the following theorems.

Theorem 1 (Greening) If g(n) = 1, then n is solitary.

Theorem 2 (Loomis) If n is odd and g(n2) is squarefree, then n2 is solitary.

Loomis’ result came years after Greening’s, but prompts a natural conjec-
ture:

Conjecture 1 With possible conditions on n, if g(nk) is kth-power-free, then
nk is solitary.

Note that if g(nk) is kth-power-free, then rad(n)|(n/g(n)). This means that
any friend m of nk must be divisible by all primes that divide n. And it seems
this prohibits friends somehow. A search through solitary/friendly numbers
showed that
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1. For friendly numbers, we often, but not always (n = 80, 200), have

rad(n) 6 | (n/g(n)).

2. For all known solitary numbers, we have

rad(n)|(n/g(n)).

To rephrase the condition, if rad(n) 6 | (n/g(n)), then there is some p|n with
νp(n) = νp(g(n)). Let’s define two more arithmetic functions.

α(n) = max
p

(νp(n))

β(n) = min
p|n

(νp(n))

γ(n) = gcd
p|n

(νp(n))

Conjecture 2 (Conj 1 Rephrased) If α(g(n)) < γ(n), then n is solitary,
possibly with some conditions on n.

If this conjecture is true, then the density of {n | α(g(n)) < γ(n)} is a lower
bound for the density of solitary numbers. Looking up to 105, this density seems
to be around .34093, with the following growth.

It would be helpful if we could figure out average orders for these new arith-
metic functions.

Numerically, we find

1
x

∑
n≤x

α(n) = 1.70521 . . .

1
x

∑
n≤x

β(n) = 1.00918 . . .
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1
x

∑
n≤x

γ(n) = 1.003905 . . .

The first two were studied by Ivan Niven in Averages of Exponents in
Factoring Integers, Aug 1969. In that paper, he shows this constant (called
Niven’s Constant) can be written explicitly as a sum of zeta functions.

lim
x→∞

1
x

∑
n≤x

α(n) =
∞∑
k=1

(
1− 1

ζ(k)

)
.

This would suggest that Prob[α(n) = k] = 1
k

(
1− 1

ζ(k)

)
. However, taking

k = 1 would give a probability of 1, when we know that probability of an integer
being square-free is 1

ζ(2) . In fact, 1/ζ(k) is the probability that an integer is kth-
power-free.

If α(n) = k, then n is (k+1)st-power-free, which has a probability of 1
ζ(k+1) .

But n is not kth power free, which has a probability of 1− 1/ζ(k). So then we
should have

Prob[α(n) = k] = 1
ζ(k + 1)

(
1− 1

ζ(k)

)
for k ≥ 1. So then the average order should be

∞∑
k=1

k

ζ(k + 1)

(
1− 1

ζ(k)

)
= 2.42598.

Why the discrepancy? The sole difference is the ζ(k + 1) in the denominator
rather than k. So there is some overlap? But neither seems to capture the true
probability that α(n) = k. Strange.

Niven also shows that∑
n≤x

β(n) = x+ ζ(3/2)
ζ(3)

√
x+ o(

√
x),

with little-o notation meaning the remainder grows slower than
√
x asymp-

totically. This shows the average order of β(n) is 1. We’d expect the average
order of γ(n) to be 1 as well.

I haven’t found it in a paper, but it’s not hard to show the average order of
γ(n) is indeed 1.

∑
n≤x

γ(n) =
∞∑
k=1

k|{n ≤ x | γ(n) = k}| =
∞∑
k=1

k|{n ≤ x1/k | γ(n) = 1}|.

The last equality comes from the fact that if γ(n) = k, then γ(n1/k) = 1.
This also means that we only need to study the case of γ(n) = 1.
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If n ≤ y and γ(n) = 1, then n is not a square, not a cube, not a fifth power,
and so on, over all primes. The largest possible exponent is log2(y), so∑

n≤y
γ(n)=1

1 = y −
∑

p≤log2(x)

y1/p

Then

∑
n≤x

γ(n) =
∞∑
k=1

k|{n ≤ x1/k | α(n) = 1}| =
∞∑
k=1

x1/k −
∑

p≤log2(x1/k)

x1/(kp)

 .

For all k ≥ 2, the summand is O(x1/2), as is the sum over primes when
k = 1. Therefore ∑

n≤x

γ(n) = x+O(x1/2).

This proves the average order of γ(n) is 1. For x = 105, the estimate gives
100316 while the true number is 100586.

Attempting the same thing with the average order of g(n) requires us to
attempt the count n ≤ x with g(n) = k for a fixed k. This is studied in On a
theorem of Niven by Dressler (1974) and On the density of some subsets
of integers by Luca (2007).

In particular, it is shown that the natural density of {g(n) = 1} is 0. This
hints that the hope of {n | α(g(n)) < γ(n)} providing a non-zero lower bound
for the density of solitary numbers is probably hopeless. But we do expect the
natural density of solitary numbers to be 0, so it’s not unexpected.

And of course, there is a paper Some asymptotic formulas in number
theory by Erdos, 1948, in which he establishes the asymptotics of our function
g(n)! In fact, he shows that for f(n) = σ(n) or φ(n), we have∑

n≤x
gcd(n,f(n))=1

1 ≈ xeγ0

logloglogx
,

where γ0 is the Euler-Mascheroni constant. What a wonderful result! This
probably comes from somewhere similar to Merten’s 1874 Product Formula:∏

p≤x

(
1− 1

p

)
≈ eγ0

logx

He gives two other asymptotics that I’ll include here:∑
p≤x

logp

p
= logx+O(1)

∑
p≤x

1
p

= log2x+ β +O(1/logx),
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where β = 0.26149 is Merten’s Constant, which can be defined via the Prime
Zeta function and the Euler-Mascheroni constant γ0,

β − γ0 =
∑
j≥2

P (j)
j

The Prime Zeta function is defined as

P (s) =
∑
p

1
ps

and naturally pops up when looking at the logarithm of the zeta function:

logζ(s) =
∑
p

−log
(

1− 1
ps

)
=
∑
p

∞∑
k=1

1
k

(
1
ps

)k

=
∞∑
k=1

1
k

∑
p

1
pks

=
∑
k≥1

P (ks)
k

Now that we’re a bit more versed in arithmetic functions, we can go back to
the abundancy index and see what we see.

A(n) =
∑
d|n

1
d

=
∏
p|n

(
1 + 1

p
+ · · ·+ 1

pνp(n)

)
≤
∏
p|n

(
1 + 1

p
+ . . .

)
=
∏
p|n

(
1− 1

p

)−1

Euler’s phi function φ(n) counts the number of integers less than n coprime
to n. From a probability point of view, we can write

φ(n) = n
∏
p|n

(
1− 1

p

)
.

And this gives us

A(n) ≤ n

φ(n)
Plotting n

φ(n) −A(n) gives
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And a histogram of values gives

We can use this to try to sieve for friendly numbers. If n and m are friends,
then A(n) = A(m), so

A(n) < m

φ(m) and A(m) < n

φ(n)

So we reduce our search of friends for n from all of Z+ \ {pk} to those m
with A(n) < m

φ(m) . Or more generally, we can deduce that n andm being friends
implies A(n) < m/φ(m) AND A(m) < n/φ(n).

For x = 100 and x = 1000, we can plot all (n,m) with 0 < n,m ≤ x and
\ < m/φ(m). This is actually a descent reduction in density! The density of
the larger plot is

7463/12500 ≈ 0.59704

8



If we only look at the “symmetric core" (only those pairs (n,m) for which
(m,n) also satisfied the inequality), we get these. This further reduces the
density to

194081/500000 ≈ 0.388162

We can go further by only plotting pairs that do not contain prime powers
and are not (n, n). This brings the density for the larger plot to

93141/250000 ≈ 0.372564

This wasn’t much of a change, but considering that for prime powers n, we
have A(n) = 1 + ε and n/φ(n) = 1 + θ for small ε, θ, it makes sense that it’d be
common for A(n) < m/φ(m) but rare for A(m) < n/φ(n).

This suggests that n is more likely to be friendly if n/φ(n) is larger, as this
allows more room for A(m). And n/φ(n) is maximized when φ(n) is minimized.
If n has very few integers m < n with gcd(n,m) = 1, then n is divisible by a
lot of primes. Therefore, n/φ(n) is maximized when n is a primorial.

In the note 6020 by Andersen, Hickerson, and Greening in the American
Mathematical Monthly 1977, they give an explicit lower bound on the density
of friendly numbers as

8
147 = 2

7

[
1
6 + 1

28 −
1
84

]
≈ 0.0544217687.
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This comes from the fact that if gcd(n, 42) = 1, then A(6n) = A(28n) = 2A(n).
Since the density of n coprime to 42 is φ(42)/42 = 2/7, this shows there is a
positive density of numbers n with A(6n) = A(28n) and therefore the density
of friendly numbers is positive.

To get the specific number, we know that 6n is a multiple of 6, the set of
which has density 1/6. Similarly, 28n is a multiple of 28 and has density 1/28.
But we overcounted and need to remove any number that is a multiple of both,
i.e. any multiple of lcm(6, 28) = 84. This has density 1/84 and the expression
follows.

For reference, here are plots for A(n) and n/φ(n) respectively.

We can make the inequality A(n) < n/φ(n) more exact, but we first need
a definition. We say d|n is a maximal divisor if for at least one p|n, we have
νp(d) = νp(n). Meaning the exponent of p in d is as large as it can be. We have

n

φ(n) =
∏
p|n

(
1− 1

p

)−1
=
∏
p|n

∞∑
k=0

1
pk

=
∑
a

rad(a)|rad(n)

1
a
.

For such an a, we say that p|nmaximally divides a if νp(a) > νp(n). Letm(a)
be the number of primes that maximally divide a. For example, if m(a) = 0,
then νp(a) ≤ νp(n) for all p|n. In other words, m(a) = 0 if and only if a is a
divisor of n.

On the other end, if m(a) = ω(n), then all primes p|n maximally divide a,
so νp(a) ≥ νp(n) + 1 for all p|n. This allows us to split our sum into three parts.

n

φ(n) =
∑

rad(a)=rad(n)
m(a)=0

1
a

+
∑

rad(a)=rad(n)
m(a)=ω(n)

1
a

+
∑

rad(a)=rad(n)
0<m(a)<ω(n)

1
a

= A(n) + 1
φ(n)rad(n) +

∑
rad(a)=rad(n)
0<m(a)<ω(n)

1
a

The first sum is the sum of reciprocals of divisors of n, and therefore is equal
to A(n). For the second sum,

∑
rad(a)=rad(n)
m(a)=ω(n)

1
a

=
∏
p|n

∞∑
k=νp(n)+1

1
pk

=
∏
p|n

1
pνp(n)+1

∞∑
k=0

1
pk
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= 1
nrad(n)

∏
p|n

(
1− 1

p

)−1
= 1
φ(n)rad(n)

If m(a) = 1, then there is exactly one p|n so that νp(a) > νp(n). So all a
can be written as pνp(a)+1−νp(n)d, where d is a divisor of n.

Then ∑
rad(a)=rad(n)

m(a)=1

1
a

=
∑
p|n

1
pνp(n)+1

∞∑
k=0

1
pk

∑
d|(n/pνp(n))

1
d

=
∑
p|n

1
pνp(n)+1

(
1− 1

p

)−1
A
(

n

pνp(n)

)
=
∑
p|n

A
(

n
pνp(n)

)
pνp(n)(p− 1)

=
∑
p|n

A
(

n
pνp(n)

)
pφ(pνp(n))

And in general, if m(a) = k, then we will sum over all k-tuples P of primes
p|n, then factor a as PνP (n) multiplied by a divisor of n/PνP (n), and then
multiplied by all excess powers of primes in P. So

∑
rad(a)=rad(n)

m(a)=k

1
a

=
∑
P|n

1
PνP (n)+1

∞∑
k=0

1
Pk

∑
d|(n/PνP (n))

1
d

The inner sum is A(n/PνP (n)) and the middle sum is

∏
p∈P

(
1− 1

p

)−1
= PνP (n)

φ(PνP (n))

So we get ∑
rad(a)=rad(n)

m(a)=k

1
a

=
∑
P|n

k−tuple

A(n/PνP (n))
Pφ(PνP (n))

We can check this works by checking k = 0, which will be the smallest
numbers, and therefore the largest contributors to the sum. Then P is an
empty set of primes, So we get∑

rad(a)=rad(n)
m(a)=0

1
a

= A(n)
φ(1) = A(n)

And for k = ω(n), the smallest contribution, we get that P is all primes
dividing n, so ∑

rad(a)=rad(n)
m(a)=ω(n)

1
a

= A(1)
rad(n)φ(n) = 1

φ(n)rad(n)
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So we get a final expression

n

φ(n) =
ω(n)∑
k=0

∑
P|n

k−tuple

A(n/PνP (n))
Pφ(PνP (n))

.

It’s fun to see an example of this. Let n = 23 ∗ 3 ∗ 5 = 120, so 120
φ(120) = 15/4.

The righthand side is

= A(120)+
(
A(15)
2φ(8) + A(40)

3φ(3) + A(24)
5φ(5)

)
+
(
A(5)

6φ(24) + A(3)
10φ(40) + A(8)

15φ(15)

)
+ 1

30φ(120)

= 3 +
(

8/5
8 + 9/4

6 + 5/2
20

)
+
(

6/5
48 + 4/3

160 + 15/8
120

)
+ 1

960

= 3 + 7
10 + 47

960 + 1
960

= 15
4

In The Error Term of the Summatory Euler Phi Function by N.A.
Carella, he covers a lot of great asymptotics. He shows∑

n≤x

1
φ(n) = c0 + c1log(x) +O

(
logx

x

)
and ∑

n≤x

φ(n)
n

= 1
ζ(2)x+O(1)

Most relevant to our previous work, he also gives the nice asymptotic for n/φ(n):∑
n≤x

n

φ(n) = ζ(2)ζ(3)
ζ(6) x+O(logx)

Which makes me want to explore what that coefficient should be interpreted
as. To establish these, he gives a few very helpful lemmas on the floor and
fractional-part functions.∑

n≤x

{x
n

}
= (1− γ0)x+O(

√
x)

∑
n≤x

µ(n)
n

{x
n

}
= O(1)

∑
n≤x

1
n

{x
n

}
= (1− γ0)logx+ a1 +O(x−1/2).
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We can use these to determine the average order of the abundancy index
A(n)! I’ve wondered about this for a long time.∑

n≤x

A(n) =
∑
n≤x

σ(n)
n

=
∑
n≤x

∑
d|n

1
d

=
∑
d≤x

∑
n
d|n

1
d

=
∑
d≤x

1
d

⌊x
d

⌋
=
∑
d≤x

x

d2 −
∑
d≤x

1
d

{x
d

}
= ζ(2)x− (1− γ0)logx+ a1 +O(x−1/2)

= ζ(2)x+O(logx)

Which shows the average order of A(n) is ζ(2) ≈ 1.64493.
One awesome thing is that the average order of n/φ(n), ζ(2)ζ(3)

ζ(6) ≈ 1.943596,
looks a lot like what I got for the average order of the product of exponents of
integers:

ε(n) =
∏
p|n

νp(n).

For x = 106, we get
1
x

∑
n≤x

ε(n) = 1.93439.

Let’s change directions and look at another decomposition of n. Generalizing
rad(n), the product of all primes dividing n, let radk(n) be the product of all
primes p for which pk|n. Then

n =
∞∏
k=1

radk(n)

since pk|n for k = 1, 2, . . . , vp(n).
We have rad1(n) = rad(n) and radα(n)+1(n) = 1 for all n. With respect to

this decomposition, we’ll define a few functions. First, what if we swap addition
and multiplication and see how it reacts? Let

`(n) =
α(n)∑
k=1

radk(n)

We’ll have more terms if α(n) is higher, but we’ll have larger terms if ω(n)
is higher. If n is square-free, α(n) = 1, then `(n) = rad(n). Let’s plot for
m = 100, 1000, 10000, 100000.
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Beautiful! The top line is `(n) = n. This include square-free integers but in
fact includes more. For example, `(4) = 2 + 2 = 4. More generally, `(pk) = kp,
which equals pk only when p(pk−1 − k) = 0, which means pk−1 = k. If k = 2,
then p = 2. If k ≥ 3, then pk−1 > k for all primes p, so 4 is actually the only
prime power exception.

For x, y > 2, we have xy > x+y, so if α(n) = 2, then n > `(n). This extends
to show that n = 4 is the only exception on the top line. So∑

n≤x
n/`(n)=1

1 ≈ x

ζ(2)

The other lines seem to line up with the slopes 1/m for m = 1, 2, 3, . . . , but
not all n fall onto these lines. In fact, most do not but are simply close to such
a slope. Here is a plot of `(n)/n for n ≤ x with x = 1000, 10000.

Checking up to x = 105, it seems that about 75% of `(n)/n are distinct.
Plotting out the counts of each value `(n)/n takes for x = 1000, 10000 gives
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So counting n/`(n) = 2 appears to have exactly 2 solutions n = 16, 18. But
to get a true sense of the density of the line with slope 1/2, we should count
solutions to |n/`(n)− 2| < ε.

For example, taking ε = 0.1, we get these new solutions.

The density seems to be about 0.10 but at x = 105, already exceeds 0.1012.
Taking ε = 0.5 makes it take slightly longer to grow, but by x = 105, is also
equal to 0.1012.

A few new numbers are

84/`(84) = 2− 1
11

124/`(124) = 2− 1
16

1028/`(1028) = 2− 1
129

One interesting thing is that we never get a plus sign instead of the minus
sign. For m = 3, we get numbers like

333/`(333) = 3− 3
38

585/`(585) = 3− 1
22

2826/`(2826) = 3− 1
105

To try to determine the average order of `(n), we can plot the averages up
to x = 105 as follows:
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This suggests that the sum of `(n) is approximately quadratic with a coef-
ficient of around 0.35. Note that the sum of n is quadratic with a coefficient of
0.5.

Compare this to the plot of averages of rad(n).

They look exactly the same! What is this coefficient? With more precision,
we get 0.3522125, which looks like it might be half of the “carefree constant”:∏

p

(
1− 1

p(p+ 1)

)
≈ 0.704442200

I will have to read some papers to prove this is the constant, but proving
that rad(n) and `(n) have the same average order is actually not that difficult.
Since

`(n) = rad(n) +
α(n)∑
k=2

radk(n),

we know ∑
n≤x

`(n) =
∑
n≤x

rad(n) +
∑
n≤x

α(n)∑
k=2

radk(n)

=
∑
n≤x

rad(n) +
α(n)∑
k=2

∑
n≤x

radk(n)
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Here are plots of radk(n) for k = 1, 2, 3, 4, for n ≤ 105.

Notice each tend to clump into certain curves. The first has the lines of slope
1, 1/2, 1/3, and so on. The second has curves (x/m)1/2 for m = 1, 2, 3, . . . .

So in general, we might guess that radk(n) clusters around one of the curves
(n/m)1/k. Which one? Well if radk(n) = (n/m)1/k, then

m = n

radk(n)k =
∏
p|n

νp(n)<k

pνp(n)
∏
p|n

νp(n)≥k

pνp(n)−k

So the top lines of each graph are those n with n = radk(n)k, meaning that
n is the kth power of a square-free integer. So we have the asymptotic∑

n≤x
n=radk(n)k

1 =
∑

n≤x1/k
n squarefree

1 = 1
ζ(2)x

1/k +O(
√
x

1/k)

And the average will be 1
ζ(2)x

1
k−1, which will be 1

ζ(2) for k = 1 and 0 for
k ≥ 2.

If we try to explicitly calculate how many n satisfy `(n) = L for some fixed
L, then we want to count the number of ways to write L as a sum a1 + · · ·+ at
with ai 6= 1 square-free for all i, and ai+1|ai for all i. Let’s call these square-free,
divisible partitions.
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We can encode the square-free part easily with the generating function:∏
n squarefree

1
1− qn =

∏
k≥1

µ(k)2

1− qk

The coefficients appear in OEIS A073576. But, they include parts = 1, so we
make the small adjustment

∏
k≥2

µ(k)2

1−qk . This appears on OEIS A280127.
Surprisingly, the divisible partitions also appear! In A003238, they describe

this as the number of roots trees with n vertices, for which vertices at the same
level have the same degree. They list other interpretations, including ours, and
various facts and conjectures on asymptotics. They also link to a MathOverflow
post on the sequence.

In particular, Harary and Robinson showed that the generating function
F (x) for the sequence (offset by 2) satisfies the functional equation

F (x) = x2

(
1 +

∞∑
n=1

F (xn)
xn

)
This looks a lot like the equation for

log(ζ(s)) =
∞∑
n=1

P (ks)
k

where P (s) is the prime zeta function. Of course, this includes 1 as a part as
well. Looking at divisible partitions with parts > 1 gives OEIS A214579.

The number of square-free, divisible partitions does not appear on OEIS.
The sequence begins as

[0, 1, 1, 1, 1, 3, 1, 2, 2, 4, 1, 6, 1, 6, 6, 5, 1, 10, 1, 10, 8,
9, 1, 15, 4, 11, 7, 14, 1, 26, 1, 14, 13, 16, 12, 28, 1, 19, 16,
28, 1, 44, 1, 28, 30, 27, 1, 49, 8]

and here are plots up to 50:
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2 q = −1 Phenomenon and Arithmetic Func-
tions

The classic example of the q = −1 Phenomenon is the q-binomial coefficients.
First, we define the q-analogue of an integer

nq = 1 + q + q2 + · · ·+ qn−1.

Then we define the q-analogue of the factorial as

[n!]q = nq(n− 1)q . . . 2q1q.

And finally, we can define the q-binomial coefficient as

[ n
m

]
q

= [n!]q
[m!]q[(m− n)!]q

=
m−1∏
i=1

1− qn−i
1− qi+1

For example,[
4
2

]
q

= [4!]q
[2!]q[2!]q

= (1 + q + q2 + q3)(1 + q + q2)(1 + q)(1)
(1 + q)(1)(1 + q)(1) = (1 + q)(1 + q2)(1 + q + q2)

1 + q

= (1 + q2)(1 + q + q2) = 1 + q + 2q2 + q3 + q4

The binomial coefficient
(4

2
)

= 6 tells us there are 6 subsets of size 2 of a
4-element set. The q-binomial coefficient tells us about the structure of those
subsets under some group action: a homomorphism from a group to a group of
transformations of some object.

In our case, the objects are the six subsets {12, 13, 14, 23, 24, 34} of the set
{1, 2, 3, 4}. A group that acts on these subsets is the finite cyclic group Z/4Z
which adds 1 to each element, modulo 4. We get an orbit of size 4: 12→ 23→
34→ 14→ 12 and an orbit of size 2: 13→ 24→ 13.

So what does the q-binomial coefficient tell us about this action? If we let
q = −1, then we get [

4
2

]
q=−1

= 1− 1 + 2− 1 + 1 = 2.

Notice that (−1)2 = 1, and therefore the group action this corresponds to
should have order 2, and is therefore the +2 action. This splits our subsets into
orbits of length 2: 12→ 34, 14→ 23 and fixed points 13 and 24.

And that is the answer. Setting q = −1 counts the number of fixed
points of some involution. This of course leads to ideas: Encode some object
you’re interested in within a larger framework so that your object represents
fixed points. Then use this technique to count your objects.
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A more general phenomenon is called Cyclic Sieving. We can think about
fixed points of other group actions. Indeed, if we look at the +0 action, we have
6 fixed points and [

4
2

]
q=1

= 1 + 1 + 2 + 1 + 1 = 6.

The +1 action leaves no fixed points. This action has order 4 in the group,
so we should plug in a 4th root of unity, i.e. q = i. This gives[

4
2

]
q=i

= 1 + i− 2− i+ 1 = 0.

This has been studied extensively, with Vic Reiner and Bruce Sagan a few
of the leading researchers. What if we looked at a q-analogue of some of these
arithmetic functions we’ve talked about and see if there is any kind of meaning
to q = −1 or other roots of unity.

Let’s start with φ(n), Euler’s totient function. This has the following nice
identity ∑

d|n

φ(d) = n

which can be proven in various ways, but I like expanding the product formula.

φ(n) = n
∏
p|n

(
1− 1

p

)
= n

∑
d|n

µ(d)
d

=
∑
d|n

µ(d)
(n
d

)
Then applying Mobius Inversion, we get∑

d|n

φ(d) = n

Instead of our usual q-analogue of n, why don’t we take this one? Define

n̄q =
∑
d|n

φ(d)qd.

If n = p a prime, for example, then

n̄q = q + (p− 1)qp

The product of two primes

p̄1qp̄2q = (q+(p1−1)qp1)(q+(p2−1)qp2) = q2+(p2−1)qp2+1+(p1−1)qp1+1+(p1−1)(p2−1)qp1+p2

= q(q + (p2 − 1)qp2 + (p1 − 1)qp1 + (p1 − 1)(p2 − 1)qp1+p2−1)

Very close, but multiplied by q and the last term is off. Which means the
idea of multiplication isn’t quite preserved, as p̄1qp̄2q 6= (p1p2)q.

Anyway, let’s plot some values for q = −1.
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The red lines are y = ±x and it seems that the values of n̄ are concentrated
around n̄ = −n, n̄ = 0, and then some lines that cluster towards n̄ = n.

The bottom line is easily explained: n̄ = −n if and only if n is odd. So that
line has density 0.5 and every number above is even.

Numbers very close to n̄ = n will have almost all even divisors. Since 1 is
always a divisor, this means n = 2k has n̄ = n − 1 for all k, and these will be
the closest integers to the line.

The line n̄ = 0 is very interesting as well. It seems that all even square-free
integers n have n̄ = 0, but the converse is not true, as 1̄8 = −1+1−2+2−6+6 =
0. This is because the truth is that if n = 2k with k any odd integer, then n̄ = 0.
This is because∑
d|n

(−1)dφ(d) =
∑
d|k

(−1)dφ(d) +
∑
d|k

(−1)2dφ(2d) =
∑
d|k

(−1)dφ(d) +
∑
d|k

φ(2)φ(d)

Since all divisors of k are odd, the first sum is −k. And since φ(2) = 1, the
second sum is k, so n̄ = 0. So does setting q = −1 count the number of factors
of 2 in n?

Let n = 2ak, with k odd. Then

n̄ =
∑
d|n

(−1)dφ(d) =
a∑
i=0

∑
d|k

(−1)2idφ(2id)


= −k +

a∑
i=1

∑
d|k

φ(2i)φ(d)

= −k +
a∑
i=1

2i−1
∑
d|k

φ(d)

= −k + k

a∑
i=1

2i−1

= k(−1 + (2a − 1)) = k(2a − 2)

= n− 2k = n

(
1− 1

2a−1

)
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In other words, we can interpret n̄q=−1 as the number of integers ≤ n that
are divisible by at most ν2(n)−2 copies of 2. To explicitly compare this to φ(n):

φ(n) = {m ≤ n | gcd(m,n) = 1}

n̄q=−1 = {m ≤ n | ν2(m) < ν2(n)− 1}
If we try to isolate an odd prime p and let n = pak, then we get to

n̄ =
a∑
i=0

∑
d|k

(−1)p
idφ(pid)

 =
a∑
i=0

∑
d|k

(−1)dφ(pi)φ(d)


=

a∑
i=0

φ(pi)
∑
d|k

(−1)dφ(d) = pak̄

Since we’ve analyzed the q = −1 analogue for an even number, and ν2(k) =
ν2(n), we have

n̄ = pak̄ = pak

(
1− 1

2ν2(k)−1

)
= n

(
1− 1

2ν2(n)−1

)
which shows that q = −1 truly does isolate the even prime.

In general, there is a method called series multisection to isolate equally-
spaced terms in a q-series, but that is a bit different than this.

The following plots are setting q = i and plotting the real parts (blue) and
imaginary parts (red) separately and together.
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In terms of bounding lines, it seems the real part of n̄q=i has upper bound
y = x and lower bound y = −x/2. While the imaginary part has bounding lines
y = ±x like q = −1. Very interesting!

Plotting n̄q=i on the plane gives an amazing graph!

And plotting q = i1/2 and q = i1/3 respectively gives similarly wonderful
images:

We can also plot the points colored on a gradient to show where they’re
mapped from, though this does take a lot longer to complete. The numbers
start at red and transition to light blue. The first two plots are q = 1,−1,
whose color will increase with n.
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The next four are q = i4/3, i, i1/2, i1/3, which are plotted by a complex
number but colored linearly in n.

Using the radical decomposition n =
∞∏
k=1

radk(n), we have another expres-
sion

log(n) =
∞∑
k=1

log(radk(n))

Let the q-analogue of log(n) be defined by
∞∑
k=1

log(radk(n))qk. We plot this for

q = 1,−1, i4/3, i.
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Another q-analogue of log(n) can be defined by the Von Mangoldt function,
for which ∑

d|n

Λ(d) = log(n)

and so our q-analogue is ∑
d|n

Λ(d)qk.

We plot this for q = 1,−1, i4/3, i.

Wild! Why are the real parts for q = i all on certain equally-spaced points?
Why the tree-looking pattern for q = i4/3? For q = −1, is that really a concave
down logarithmic curve up top, even with the majority being −log(n) type
curves? Let’s work with the general q-analogue first:

∑
d|n

Λ(d)qd =
∑
p|n

νp(n)∑
k=1

log(p)qp
k

=
∑
p|n

log(p)(qp + qp
2

+ · · ·+ qp
νp(n)

)

If we let q = −1, then we have to consider whether n is even or odd. If
n = 2ν2(n)k with k odd,

log(n)q=−1 =
∑
p|n

log(p)(−νp(n)) = ν2(n)log(2)−
∑
p|k

νp(n)log(p)

25



= log(2ν2(n))−
∑
p|k

log(pνp(n)) = −log(k/2ν2(n)) = log(4ν2(n))− log(n)

So the bottom curve y = −log(n) can be explained by all odd numbers.
And the subsequent lines are similar to what we found before, corresponding
to how many powers of 2 our number has. This also explains the very sparse
logarithmic curve up top. log(n)q=−1 will be largest when n is a power of 2.

Let’s take a turn and look at another arithmetic function, σ(n). We plot∑
d|n σ(d)qd for q = 1,−1, i4/3, and i.

For q = −1, the empty section in the middle doesn’t actually seem to be
bound by y = ±x, but closer to y = ±0.9x.

Let’s make another switch and consider a q-analogue of the point function
using the Mobius function. Recall that

∑
d|n µ(d) = 0 for all n except n = 1,

when it equals 1. So this gives 1̄q = q and for n > 1, we get a q-analogue of 0 as

0̄q(n) =
∑
d|n

µ(d)qd

This 0 is often also constant. For example, let q = −1 and write n = 2ak
with k a non-unity odd integer. Then

0̄q=−1(n) =
∑
d|n

(−1)dµ(d) =
a∑
i=0

∑
d|k

(−1)2idµ(2id)


= −

∑
d|k

µ(d) +
a∑
i=1

∑
d|k

µ(2i)µ(d)

=
a∑
i=1

µ(2i)
∑
d|k

µ(d) = 0
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If n = 2a is a power of 2, then

0̄q=−1(n) =
∑
d|n

(−1)dµ(d) = −1 +
a∑
k=1

µ(2k)

= −1 +−1 +
∑
d|2a

µ(d) = −2.

Therefore, this gives us an indicator function for powers of 2.

3 Back to Abundancy
Greening’s Criterion says that if gcd(n, σ(n)) = 1, then n is solitary. And the
reason is because that condition means any friend m of n must be a multiple of
n. But if n divides m, then

A(n) =
∑
d|n

1
d
<
∑
d|m

1
d

= A(m).

If gcd(nk, σ(nk)) is kth-power-free, then we can similarly deduce that any
friend m of nk must be a multiple of rad(n). But this only implies

A(rad(n)) < A(m),

which is already known from the fact that m is a friend of nk:

A(rad(n)) ≤ A(n) < A(n2) < · · · < A(nk−1) < A(nk) = A(m)

Let’s explore the sequence A(ni). This sequence forms a strictly increasing,
bounded sequence, and therefore has a limit, which we’ll call A(n). Since limits
commute with products, we have that A(n) is weakly multiplicative, so we can
look at prime powers.

If n = pk, then

A(pk) = lim
i→∞

A(pki) = lim
i→∞

ki∑
j=0

1
pj

=
∞∑
j=0

1
pj

= 1
1
p − 1

= p

p− 1 =
(

1− 1
p

)−1
.

So the powers don’t even matter. We could write this as

A(n) = A(rad(n))

If n = pk1
1 . . . pktt , we will have

A(n) = A(p1) . . .A(pt) =
∏
p|n

(
1− 1

p

)−1
= n

φ(n)
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Awesome!! This means thatA(ni) is a monotonic increasing sequence bounded
above by n/φ(n). This gives a more refined idea of m and nk being friends im-
plying A(m) < n/φ(n). If m and nk are friends, then

A(nk−1) < A(m) < A(nk+1)

Let’s rephrase this in another way. Recall the definitions

α(n) = max
p|n

(νp(n))

γ(n) = gcd
p|n

(νp(n))

g(n) = gcd(n, σ(n))
and our conjecture was that, with possible conditions on n, if α(g(n)) < γ(n),
then n is solitary. This is supported by γ(n) = 1 giving a version of Greening’s
criterion and γ(n) = 2 giving a version of Loomis’ theorem.

So if m and n are friends, then

A(n
γ(n)−1
γ(n) ) < A(m) < A(n

γ(n)+1
γ(n) )

Let’s test some friendly pairs:
With n = 6 and m = 28, we have γ(6) = 1 and γ(28) = 1, and

A(1) < A(28) < A(36)

1 < 2 < 2.5278
A(1) < A(6) < A(784)

1 < 2 < 2.254
What this means is that if we’re looking for friends of n, we only have to

search
A−1

(
A(n1− 1

γ(n) ),A(n1+ 1
γ(n) )

)
And if γ(n) is particularly large, then both values are approximately A(n) =

n/φ(n), which suggests higher powers are less likely to be friendly. This raises
the question of whether perfect powers tend to be friendly or solitary...someone
must have explored this before! Of course, these regions could all be dense,
which would go the other direction. This also hints that I will soon cover
abundancy outlaws.

For n = 2, we get the interval A−1(1, 7/4), which seems to have density
about 0.60724. Fun enough, we can incorporate a very well-known result in
the area. A number n is called abundant if A(n) > 2. This is usually stated
as 2n < σ(n). In 1998, Marc Deleglise showed that the density of abundant
numbers is between 0.2474 and 0.2480. In terms of the abundancy index, this
means the interval

A−1(1, 2)
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coming from any known perfect number (n = 6 for example) has a density of
between 0.7520 and 0.7526. I wonder if his methods could be adapted to give a
density to more general intervals?

His paper is Bounds for the Density of Abundant Integers. This
immediately gives various references to Davenport (1933), Elliott (1979), and
Tenenbaum (1995). And he notes in the introduction that this does indeed give
the density of A−1(1, z) for all z > 1. Perhaps we can adapt it to estimate the
density of A−1

(
A(n1− 1

γ(n) ),A(n1+ 1
γ(n) )

)
. For brevity, let’s call this the friendly

region of n.
For now, let’s plot the previously discussed region for a few different n. Here

are n = 2 (density ∼ 0.60724) and n = 3 (density ∼ 0.394).

Here are n = 4 (density ∼ 0.269) and n = 5 (density ∼ 0.298).

If we plot the densities as a function of n and join the points, we get
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4 A new day
A new day, a new realization. Finding the densities of these intervals is very
easy with Deleglise’s result, since

δ(A−1(a, b)) = δ(A−1(1, b))− δ(A−1(1, a))

But with that came the realization that while this is cool (and I still will do
it), it probably won’t be so helpful as it relies on computing abundancy indices
to determine whether an integer is in the pre-image. So we could have just
directly checked equality to A(n). But perhaps, if there is a way to estimate
the integers in one of these intervals without explicit computation, this could
be an interesting direction.

Consider the following proof that 18 is solitary. First we suppose there is
a friend m so that A(m) = A(18) = 13/6 = 2.167. Then m = 2a3b` for some
a, b ≥ 1 and ` ≥ 1 with gcd(6, `) = 1. And since 18 = 2 ∗ 32, we actually require
b < 2, or 18 would divide m, so A(18) < A(m). Then b = 1 is a must and we
have m = 2a3`. Then

13
6 = A(m) = A(2a)A(3)A(`) = (2a+1 − 1)

2a
4
3A(`) = 2a+1 − 1

2a−23 A(`)

and therefore
A(`) = 2a−313

2a+1 − 1 .

But
2a−313

2a+1 − 1 >
2a−38

2a+1 − 1 = 2a
2a+1 − 1

But remember that A(n) = σ(n)/n > 1, but 2a < 2a+1 − 1 for all a ≥ 1 and so
this means A(`) < 1, a contradiction.

This is the way a lot of proofs of solitary numbers go. In fact, even Greening’s
Criterion is essentially such a proof: If gcd(n, σ(n)) = 1, then A(n) = σ(n)/n
and m = m′` where we collect all powers of primes p|n into m′ and have
gcd(m′, `) = 1. Note that gcd(n, σ(n)) = 1 means that n|m′. Then

A(n) = A(m) = A(m′`) = A(m′)A(`)

so
A(`) = A(n)/A(m′).

But since n|m′, we have A(n) < A(m′), which gives a contradiction.
In the case of n = 18, we got that the numerator of A(`) was larger than

the denominator even though g(18) = 3. While another case with g(n) = 3 is
literally unknown, n = 15. In this case, A(15) = 8/5, so any friend must have
the form m = 5a` with gcd(5, `) = 1. Then

8
5 = A(m) = A(5a`) = 5a+1 − 1

4(5a) A(`)
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which means
A(`) = 5a−132

5a+1 − 1 .

Trying the same trick as n = 18, we have that

5a−132
5a+1 − 1 >

5a−125
5a+1 − 1 = 5a+1

5a+1 − 1
But the last term is greater than 1, so it doesn’t help.

So what’s different? Let’s consider a general case where n/g(n) = p. Then
m = pa` and A(m) = A(pa)A(`), so

A(`) = A(n)
A(pa)

So we can deduce the non-existance of ` if A(n) < A(pa). If this doesn’t hold
for small a, we know that taking a → ∞ means A(pa) → p/φ(p) = p/(p − 1),
so it might eventually hold. However, we have seen there are n for which this
never works, like n = 15, where A(15) = 8/5 = 1.6 but 5/φ(5) = 5/4 = 1.2.
But for n = 18, we can immediately deduce it is solitary as

A(18) = 13/6 < 3 = (2/φ(2))(3/φ(3)).

Attempting total generality, let p1, p2, . . . , pt be the primes dividing n/g(n).
Then

m = `

t∏
i=1

paii ,

where ai are general exponents. Then

A(`) = A(n)
A(pa1)A(pa2) . . .A(pa1) .

The denominator increases as the exponents increase and tends towards
t∏
i=1

pi
φ(pi)

= rad(n/g(n))
φ(rad(n/g(n))) = n/g(n)

φ(n/g(n))

And this gives the following theorem.

Theorem 3 If A(n) < n/g(n)
φ(n/g(n)) , then the exponents of at least one prime

p|(n/g(n)) in a friend m of n must be bounded.

With a more refined statement, we might be able to turn this into a theorem
for solitary numbers. Take n = 20, which is currently unknown but suspected
to be solitary. We have A(20) = 21/10 and 10/φ(10) = 5/2, so it satisfies the
conditions of the theorem. If we try to prove n = 20 solitary in the normal
fashion, then we’d need m = 2a5b`. But since a, b ≥ 1, we need a = 1. So

21
10 = A(m) = A(5b2`) = A(5b)3

2A(`),
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so
A(`) = 5b−128

5b+1 − 1 .

And the numerator is in fact larger than the denominator. The issue here is
that while A(2a) goes to 2, its exponent is bounded at a = 1. So the 3/2 in the
denominator instead of 2 gives room for A(n) > A(5b2`) for all b.

In fact, since A(n) = 21/10 >
( 5

4
) ( 3

2
)

= 15/8, we cannot actually determine
that n = 20 is solitary from this. As mentioned before, maybe a combination
with the theory of abundancy outlaws would make progress here.

But I just realized, that if m is a friend of n, then m = ` n
g(n) where ` is

relatively prime to n/g(n), not to n itself. So even when rad(n) 6 |(n/g(n)), we
could still have the primes dividing n appearing in m, via `. So all friends of n
must have the form

m = `
∏
p|n

pap .

where gcd(`, n) = 1, ap 6= 0 for all p|(n/g(n)), and we require at least one prime
have ap < νp(n). Then

A(`) =
∏
p|n

A(pνp(n))
A(pap)

Term-by-term, A(pνp(n))
A(pap ) will be less than 1 if νp(n) < ap, greater than 1 if

νp(n) > ap, and equal to 1 if the exponents are equal. Specifically,

A(pνp(n))
A(pap) = A(pνp(n))

A(pap) = pap(1 + p+ · · ·+ pνp(n))
pνp(n)(1 + p+ · · ·+ pap)

= pap + · · ·+ pνp(n)+ap

pνp(n) + · · ·+ pνp(n)+ap

= 1 + (pap + · · ·+ pνp(n)+ap)− (pνp(n) + · · ·+ pνp(n)+ap)
pνp(n) + · · ·+ pνp(n)+ap

= 1 + (pap + · · ·+ pνp(n)−1)
pνp(n) + · · ·+ pνp(n)+ap

= 1 + pνp(n) − pap
pνp(n)+ap+1 − pνp(n)

= 1 + 1− pap−νp(n)

pap+1 − 1
So we have

A(`) =
∏
p|n

1 + 1− pap−νp(n)

pap+1 − 1 =
∏
p|n

pap+1 − pap−νp(n)

pap+1 − 1 =
∏
p|n

1− p−(νp(n)+1)

1− p−(ap+1)
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5 Abundancy Outlaws
The paper I originally read in 2014 about the whole friendly number/odd perfect
number problem was the Master’s Thesis of Jose Arnaldo B. Dris, called Solving
the Odd Perfect Number Problem: Some Old and New Approaches,
from 2008.

In general, we consider whether a given rational a/b appears as A(n) for
some integer n. We’ve used the fact that a/b is an abundancy outlaw if a < b,
but we can go a bit further.

Theorem 4 If gcd(m,n) = 1 and n < m < σ(n), then m/n is an abundancy
outlaw.

The above theorem is due to Wiener and Ryan. Laatsch proved that the
set of abundancy indices are actually dense in the interval (1,∞). Although we
haven’t looked at them much here, obviously a lot of Dris’ thesis is about odd
perfect numbers, none of which have been found. We do have a large number
of properties they must satisfy if they exist.

Even perfect numbers have been well-understood since the time of Euclid,
who showed that n is an even perfect number if and only if n = 2p−1(2p − 1)
for a prime p and for 2p − 1 prime. In this case,

A(2p−1(2p − 1)) = A(2p−1)A(2p − 1) = 2p − 1
2p−1

2p
2p − 1 = 2

My question is about n = 30. Its friends seem to involve perfect numbers.
Let’s factor them:

30 = 2 ∗ 3 ∗ 5 = 5 ∗ 21 ∗ (22 − 1)

140 = 22 ∗ 5 ∗ 7 = 5 ∗ 22 ∗ (23 − 1)

2480 = 24 ∗ 5 ∗ 31 = 5 ∗ 24(25 − 1)

6200 = 23 ∗ 52 ∗ 31 = 52 ∗ 23 ∗ (25 − 1)

40640 = 26 ∗ 5 ∗ 127 = 5 ∗ 26 ∗ (27 − 1)

If we try to find a friend of 30, we have A(m) = 12/5, so m = 5a` where
6 6 |`. So

A(`) = 12(5a)(4)
5(5a+1 − 1) = 5a−148

5a+1 − 1
If a = 1, this becomes 48/24 = 2, and there’s our answer. An integer m with

5||m is a friend of 30 if and only if m/5 is a perfect number.
If a = 2, then this becomes 290/124 = 60/31. If 2p − 1 is prime, then

A(2p−2(2p − 1)) = A(2p−2)A(2p − 1) = 2p−1 − 1
2p−2

2p
2p − 1

= 4(2p−1 − 1)
2p − 1

33



As 2p − 1 is prime, we must have 2p − 1 = 31, so m = 52 ∗ 23 ∗ (25 − 1) is
the only such friend.

If a = 3, then this becomes 15/13. Dris’ thesis specifically has a section
(4.1.3) on the fraction (p + 2)/p as an abundancy outlaw. BUT, it’s just that
it’s unknown whether or not such a number is an abundancy index or not. In
fact, this is equivalent to the existence of an odd perfect number. Judy Holdener
proved the following theorem.

Theorem 5 There exists an odd perfect number if and only if there exists
p, n, a, so that p ≡ a ≡ 1 mod 4, where p is a prime not dividing n and
A(n) = 2pa(p−1)

pa+1−1

Euler showed that any odd perfect number must be of the form N = pam,
where p 6 |m and p ≡ 1 ≡ a mod 4. The theorem works as A(n) = 2/A(pa) so
A(npa) = A(n)A(pa) = 2.

Holdener and Stanton further proved a wonderful theorem about when σ(N)+t
N

is an abundancy outlaw. It’ll be great to have here:

Theorem 6 For a positive integer t, let σ(N)+t
N be a fraction in lowest terms,

and let N =
∏n
i=1 p

ki
i for primes p1, p2, . . . , pn. If there exists a positive integer

j ≤ n such that pj < 1
tσ(N/pkjj ) and σ(pkjj ) has a divisor D > 1 such that at

least one of the following is true:

1. A(pkjj )A(D) ≥ σ(N)+t
N and gcd(D, t) = 1.

2. gcd(D,Nt) = 1

then σ(N)+t
N is an abundancy outlaw.

This produces a ton of abundancy outlaws:

• For all m ≥ 0 and n ≥ 1 and all odd primes p with gcd(p, σ(2m)) = 1,
then

σ(2mp2n+1) + 1
2mp2n+1

is an abundancy outlaw.

• For all primes p > 3,
σ(2p) + 1

2p
is an abundancy outlaw.

• If N is an even perfect number, then

σ(2N) + 1
2N

is an abundancy outlaw.
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• Let M be an odd integer and p, a, t ≥ 1 be odd integers such that p 6 |M
and p < 1

tσ(M). Then if
σ(paM) + t

paM

is in lowest forms, it is an abundancy outlaw.

• For primes p, q with q > 3 and p < q and gcd(p+ 2, q) = gcd(p, q+ 2) = 1,
then

σ(pq) + 1
pq

is an abundancy outlaw.

This gives us a different strategy in attempting to prove that a number is
solitary. Take n = 20 = 225 for which A(20) = 21/10 = σ(10)+3

10
Does the theorem apply? Well, 2 < 1

3σ(5) = 2 and 5 < 1
3σ(2) = 1, so the

theorem doesn’t apply. However, maybe it could apply after some steps of the
usual solitary algorithm. If m = 5a2` is a friend of n = 20, then

A(`) =
21
10

A(5a)A(2) = 21 ∗ 5a(4)(2)
10 ∗ (5a+1 − 1) ∗ 3 = 5a−128

5a+1 − 1

Since 5a+1−1 ≡ 0 mod 4, we’ll be able to cancel out a factor of 4. And 5a+1−1
mod 7 cycles as 3, 5, 1, 2, 0, 4, 3, . . . for a = 1, 2, 3, 4, . . . .

Then we have
A(`) = 5a−17

4−1(5a+1 − 1)
Our previous strategy would be to iterate until the numerator is smaller than the
denominator, but this doesn’t actually work here. The more general strategy
would be to iterate until we hit a known abundancy outlaw. Then no such `
could exist and the whole thing collapses to n being solitary.

For a = 1, we get A(`) = 7/6, which is an abundancy outlaw by Theorem
4. For a = 2, we get A(`) = 35/31, which is of the form σ(31)+3

31 , and unknown.
But we would need ` = 31b`1, so 35/31 = A(`) = A(31b)A(`1). Then

A(`1) = 35(31b−1)(30)
31b+1 − 1 = 2 ∗ 3 ∗ 52 ∗ 7 ∗ 31b−1

31b+1 − 1

For b = 1, this gives A(`1) = 35
32 , and since A(`1) is in reduced form, Theorem

4 tells us it is an abundancy outlaw.
And what does this tell us? That b 6= 1. In essence, we’re doing a depth-

first search. Thinking of this “abundancy sieve” as a depth-first search will
be helpful when coding it.

For now, let’s continue. Suppose b = 2, then A(`1) = 1085/993 and since
σ(993) = 1328, Theorem 4 applies to tell us no such `1 exists. So b 6= 2.
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For b = 3, we haveA(`1) = 33635/30784, and σ(30784) = 67564, so Theorem
4 tells us b 6= 3. For b = 4, we have A(`1) = 208537/190861 and σ(190861) =
208224, which is surprisingly close to the numerator. We have

A(`1) = σ(190861) + 313
190861

Let’s see whether Holdener and Stanton’s result applies. We have N =
190861 = 11 ∗ 17351 and t = 313. We must check if 11 < 1

313σ(17351) ≈ 55, so
we’re good! We want a divisor D of σ(11) = 12 so that gcd(D, 17351∗313) = 1.
As both are primes, we could choose any divisor. So by Theorem 6, no such `1
can exist.

Continuing this process is what get results that look like “any friend of 20
must be divisible by at least 715728775 = 52 ∗ 315.”

Let’s increment a again and let a = 3. Then A(`) = 175
156 and since σ(156) =

392, Theorem 4 tells us that no such ` can exist. For a = 4, we have A(`) =
875/781. This time, σ(781) = 864, so

A(`) = σ(781) + 11
781

We have 781 = 11 ∗ 71 and t = 11, so we need 11 < 1
11σ(71) ≈ 6.5, which we

don’t have. And this means we can’t rule out a = 4 unless we go another step.
But in this case, any such ` must be of the form 11b71c`1. Then

A(`1) =
(

875
781

)
11b(10)(71c)(70)

(11b+1 − 1)(71c+1 − 1) = 11b−171c−1612500
(11b+1 − 1)(71c − 1)

And obviously this gets tedious. In essence, we can picture this as a rooted
tree with A(n) as the root and we connect to it the implied A(`) for various
choices of exponents. Any of these that are known abundancy outlaw (by coding
all the tests) are removed. Now that I think about it, this may not even be a
tree. Regardless, the resulting graph corresponds to possible friends of n that
pass all coded abundancy outlaw tests. If we remove at least one value in each
path from A(n), then we’ll be left with a finite graph, and only a finite amount
of numbers to check to deduce n is solitary.

Let AS(n) be this graph. We build it by starting with A(n) and for each
p|(n/g(n)), we have that a possible friend looks like m = `

∏
p|n

pap for some

exponents ap with ap 6= 0 for all p|(n/g(n)). Then

A(`) =
∏
p|n

A(pνp(n))
A(pap)

The corresponding vertices are these abundancy indices for all choices of expo-
nents ap with ap ≥ νp(n/g(n)). If we test it to be an abundancy outlaw, we’ll
color it red. The node where ap = νp(n) for all p|n will be colored red and hence
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AS(n) will not contain any choices where ap ≥ νp(n) for all p|n, with at least
one strictly bigger. This boundary node will be A(`) = 1.

So really our graph is a graph AS(T, n) where T is a collection of abundancy
outlaw tests. Let’s do an example T is just the obvious test of A(`) ≤ 1. Let
n = p a prime. Then we have a single node A(p) = (p + 1)/p, and a friend of
the form pa` gives a path A(`) = (p+1)pa(p−1)

p(pa+1−1) for a ≥ 1. But for a = 1, we have
A(`) = 1, so we get that AS(p) looks like

p+1
p 1

In fact, for any integer n with gcd(n, σ(n)) = 1, we get that m = `
∏
p|n p

ap

where ap ≥ νp(n). So A(`) ≤ 1, and AS(n) consists of just two vertices.
Let’s consider n = 18, for which gcd(n, σ(n)) 6= 1. Then A(18) = 13/6, so

m = 2a ∗ 3b ∗ `, but remember that if b = 2, then n|m, so we’d get an A(`) < 1.
This gives a single red vertex for a = 1, b = 2. So setting b = 1, we get

A(`) = 13 ∗ 3 ∗ 2a
6 ∗ 4 ∗ (2a+1 − 1) = 13 ∗ 2a−3

2a+1 − 1 .

As 13 < 16, this is less than 1 for a ≥ 2. For a = 2, we have A = 13/14 and for
a = 1, we have A(`) = 13/12. Therefore, AS(18) is

13
6

13
12

13
14 1

And note that if T contains the condition “A(`) = a/n with n < a < σ(n)
and gcd(a, n) = 1,” then the graph would have two less vertices:

13
6

13
12
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So we pose a general question:

Question 2 For a set T of abundancy outlaw tests, describe the graph-theoretic
properties of AS(T, n), including the number of vertices, edges, the diameter,
girth, chromatic number, clique number, genus, critical group, and of course
whether or not this is actually a tree.

Another question we can pose is how different choices of T relate to each
other.

Question 3 If we can deduce n is solitary using some set of tests T1, can we
deduce it using another set T2?

Simplified to the previous case, this comes down to asking whether A(`) =
a/n with n < a < σ(n) and gcd(a, n) = 1 implies that there exists some `′ so
that A(`′) ≤ 1.

Well suppose we’re looking at AS(T, n) where T has both conditions and n
has the vertex A(`) = a/n for such an a, then A(`) < σ(n)

n = A(n). So

A(`′) = A(`)
A(
∏
p|n p

ap) <
A(n)

A(
∏
p|n p

ap) ≤ 1

So in this case, T with both conditions and T ′ = {A(`) ≤ 1} are basically
equivalent. And thinking of “for each `”, what is the degree of a vertex in
AS(T, n)? Each vertex from the root A(n) comes from m = `

∏
p|n p

ap and
each path comes from varying ap for a specific p. Which I believe actually
shows AS(T, n) is not a tree for all n. Because we can reach pa+1

1 pb+1
2 ` by

incrementing pa1pb2 in two different ways.
In particular, if n has at least two prime factors, then we’ll have

A(n)

A(n)
A(pa+1

1 pb2)

A(n)
A(pa+1

1 pb+1
2 )

A(n)
A(pa+1

1 pb2)

provided the middle two aren’t red by T .
Let’s do a fun one and see what graph we get for n = 20. Our previous work

establishes this part of AS(T, 20), where T contains Theorem 4 and Theorem 6.
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21
10

7
6

35
31

175
156

875
781

625
558

21875
19531

109375
97656

1

But remember the idea of the “abundancy sieve” is that this first level
may not be enough. So let’s extend the definition of AS(T, n) to any rational
number AS(T, a/b) with b 6= 1 by going through the same process beginning
with a/b. So we interpret AS(T, n) := AS(T,A(n)).

Then we consider AS(T, n) to be the spine of a larger graph AS(T, n) which
glues to each vertex A(`) of AS(T, n) the corresponding graph AS(T,A(`)).
And the purpose is clear: If any non-root vertex of AS(T, n) is an abundancy
index, then n has a friend, which can be explicitly determined via its path to
the root.

For coding purposes, we’ll compute our graph up to a depth of d from the
root A(n). So we’ll define for a rational r the function ASr(T, r, d) where we
extract the denominator and compute the primes that compute it. We then
initialize a graph and define a set that will become its edge set.

def ASr(T,r,d):
den = r.denominator()
P = list(factor(den))
om = len(P)
G = Graph()
E = []

Then we take r and consider some ` with A(`) = r. This means that ` is a
multiple of den, so ` = `′

∏
p∈P p

ap where ap ≥ νp(den) and gcd(`′, den) = 1.
So

A(`′) = r∏
p∈P A(pap) .

So the first vertex, where ap = νp(den) for all p, is r/A(den), which we make
its own function.

def next_node(r):
return r/s(-1,r.denominator())

We then add the edge (r,next_node(r)) to E and iterate this until we have
d+1 vertices. If we reach an integer, then we’ll repeat that forever, so we break
the loop. Otherwise, we add the edge and continue.

E = [(r,next_node(r))]
for i in range(d-1):

if E[-1][1] in ZZ:
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break
else:

E.append((E[-1][1],next_node(E[-1][1])))
G.add_edges(E)
return G

For example, if we go to depth 10 with n = 20, we get vertices

[21/10, 7/6, 7/12, 1/4, 1/7, 1/8, 1/15, 1/24, 1/60, 1/168, 1/480]

which clearly goes to less than 1 very quickly. In fact, the denominators form
a sequence of iterating σ starting with σ(4) = 7. This is because if A(`) = 1/a
for some integer a, then the next will be (1/a)(A(a))−1 = (1/a)(a/(σ(a))) =
1/σ(a).

That’s fun, but anyway, we’d end out process when we encountered a vertex
that failed a test in T anyway (either 7/6 or 7/12)

6 Extremal Graph Theory
Graph Theory in particular has always been one of my favorite areas of math.
In particular, there are many theorems in extremal graph theory with wonderful
proofs and interesting applications to other areas of math. Before going further
with forming a graph to address the abundancy problem, let’s detail some nice
results in this area.

Possibly the most popular such theorem is the handshaking lemma. This
says that if G = (V,E) is a graph on n vertices and m edges, then∑

v∈V
deg(v) = 2m

Theorem 7 Let G be a simple graph with no triangles. Then there exists a
partition V = X

⋃
Y into disjoint sets so that for all x ∈ X, we have deg(x) <

|Y | and for all y ∈ Y , we have deg(y) < |X|.

If we fix a graph H, we can ask about the maximal number of edges a graph
on n vertices can have before we’re guaranteed to have a copy of H. This
situation was studied by Turan in 1941 with generalizations given by Erdos-
Stone a few years later.

Theorem 8 (Turan’s Theorem) If H = Kr is the complete graph on r ver-
tices, then the maximal number of edges in a Kr-free graph on n vertices is(

1− 1
r − 1

)
n2

2
Theorem 9 (Erdos-Stone Theorem) If H is a simple non-bipartite graph
on n vertices, then the maximal number of edges in an H-free graph on n vertices
is (

1− 1
χ(H)− 1

)
n2

2
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Both are sometimes written more explicitly with a +o(1) term inside the
parentheses. Though simple, the following theorem is another that gives a
bound on the size of edge set for certain graphs.

Theorem 10 Let G be a simple planar graph with at least 3 vertices. Then
|E| < 3|V | − 6.

A more specific area with a massive amount of wonderful results is Ramsey
Theory. The basic theorem in this area is that there exists a number R(r, s)
such that any 2-coloring of the edges of a complete graph on R(r, s) vertices will
contain a red clique on r vertices or a blue clique on s vertices. Proving this
relies on the fact that

R(r, s) ≤ R(r, s− 1) +R(r − 1, s)

and the handshaking lemma.
A more general (and often more useful) version is with c colors.

Theorem 11 (Ramsey’s Theorem) There exists a number R(n1, . . . , nc) so
that any c-coloring of the complete graph on R(n1, . . . , nc) vertices must contain
a clique of size ni which is monochromatic of color i

The proof for the general case procedes pretty much in the same way as the
2-color case, but uses the fact that

R(n1, . . . , nc) ≤ R(n1, . . . , nc−2, R(nc−1, nc))

In fact, you can be even more general, but we’ll stop here. Naturally, Erdos
proved many of the important results of this area. For exact values, we have
very few. And for most values, the bounds get pretty bad. It’s easy to see that
R(r, s) = R(s, r) and R(1, n) = 1.

It’s also pretty quick to see that R(2, n) = n, because R(2, n) means we
either have a monochromatic clique of size n or a “clique of size 2”, which is an
edge. So if we have n − 1 vertices, we just color all edges one color. If we had
n vertices, this would produce a Kn. But if we try to fix this by swapping the
color of a single edge, we get a K2. The following is all other values we know
exactly:

R(3, 3) = 6 R(3, 4) = 9 R(3, 5) = 14 R(3, 6) = 18 R(3, 7) = 23

R(3, 8) = 28 R(3, 9) = 36 R(4, 4) = 18 R(4, 5) = 25
A modern leading researcher in this area is Brendan McKay.

Applications of Ramsey’s Theorem are far and wide. For example, here
is a problem from A Course in Combinatorics by J.H. van Lint and R.M.
Wilson.

Problem 1 Prove that for all integers r ≥ 1, there is a minimal number N(r)
with the following property. If n ≥ N(r) and the integers in {1, 2, . . . , n} are col-
ored with r colors, then there are three elements x, y, z (not necessarily distinct)
with the same color and x+ y = z. Determine N(2) and show N(3) > 13.
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This sounds very complicated on its own, but with the perspective of Ramsey
theory, this is actually fairly simple. We claim that R(3, 3, . . . , 3) ≥ N(r),
where we have r 2s, which shows that N(r) exists. Let n = R(3, . . . , 3) and
c : {1, . . . , n} → {1, . . . , r} be a fixed coloring of the vertices of Kn. Label the
edge (i, j) in Kn with c(|i− j|).

Then Ramsey’s Theorem tells us that there exists a monochromatic triangle
in Kn, so we have three vertices i, j, k for which c(|i−j|) = c(|j−k|) = c(|i−k|).
If we order the vertices 1 ≤ i < j < k ≤ n, then c(j − i) = c(k − j) = c(k − i)
and

(j − i) + (k − j) = k − i.
And we’re done!

To determine N(2), we can first show N(2) ≥ 5 because the sequence

1, 2, 3, 4

does not satisfy the condition. To show that N(2) ≤ 5, suppose we have some 2-
coloring c of {1, 2, 3, 4, 5} that does not satisfy the condition. Then c(2) 6= c(1),
and c(2) 6= c(4), so c(1) = c(4) since we only have two colors. This also forces
c(5) = c(2). So what to color 3? Well if c(3) = c(1), then we have 1 + 3 = 4.
If c(3) = c(2), then 2 + 3 = 5. So we can’t color 3 anything! No such coloring
exists, which shows N(2) = 5.

To show N(3) > 13, we give the following coloring of {1, 2, . . . , 13}:

1 2 3 4 5 6 7 8 9 10 11 12 13

In fact, this reveals a larger pattern, where we form a lower bound for N(r)
by gluing together a copy of a lower bound for N(r − 1) with a long string of
r-colored integers, followed by a shifted copy of the original lower bound, which
shows

N(r) ≤ 3N(r − 1)− 2.
To show this, we can find a (r − 1)-coloring of {1, 2, . . . , N(r − 1)− 1} that

contains no monochromatic x, y, x + y. Assign the same coloring to {2N(r −
1), 2N(r−1)+1, . . . , 3N(r−2)−2}, and then color {N(r−1), . . . , 2N(r−1)−1}
the new color. Any x, y colored with the new color have x+ y ≥ 2N(r− 1), and
is therefore not colored the new color. And the other colors cannot contain any
c-colored pair x, y with x + y also colored c, as looking modulo 2N(r − 1) − 1
would force such a pair in the original (r−1)-coloring of {1, 2, . . . , N(r−1)−1}.

Another problem, which we won’t go into as much detail on, is
Problem 2 Let m be given. Show that if n is large enough, then every n × n
(0, 1)-matrix has a principal submatrix of size m, in which all elements below
the diagonal are the same and all the elements above the diagonal are the same.

The trick is to take n = R(m,m,m,m) and for A = (aij), we consider the
pair (aij , aji) for i < j. As A is a (0, 1)-matrix, these pairs are one of four:
(0, 0), (0, 1), (1, 0), (1, 1). We then consider each of these as colors and continue
as expected.

There are also many theorems that apply to number theory.

42



Theorem 12 (Van der Waerden’s Theorem) For any positive integers r, k,
there exists some N so that if the integers {1, 2, . . . , N} are colored with r colors,
there are at least k integers in an arithmetic progression all colored the same
color.

This is a precursor to Szemeredi’s theorem, 1975, which proved a conjecture
by Erdos and Turan from the 30s that every subset of integers with positive
density contains an arithmetic progression of length k for all k. Terrence Tao
has called this theorem a “stepping stone” for connecting various fields of math.

One such example is the Green-Tao theorem, proving the existence of ar-
bitrarily long arithmetic progressions of primes. Szemeredi’s theorem doesn’t
apply in this case because the primes have density 0, but Tao and others intro-
duced a “relative” Szemeredi’s theorem that allowed this application.

To do: Look at their results and see what other sets of density 0 are implied
to contain arbitrarily long arithmetic progression.

In 2017, I wrote a blog post on an old blog MathematicalADD concerning
all these types of results. The most general is Erdos’ conjecture, which states
that

Conjecture 3 If
∑
n∈A

1
n diverges, then A contains arbitrarily long arithmetic

progressions.

This would imply Szemeredi’s theorem and the Green-Tao theorem. In my
blog post, I included this chart summarizing the current-known relationships
between positive density, the divergence of the sum of reciprocals, and containing
arbitrarily long arithmetic progressions. We label the boxes based on whether
the row implies the column.

• X: This basically says that δ(A) > 0 means we can bound partial sums of
reciprocals by a constant, so the infinite sum diverges.

• ST: Szemerdi’s Theorem.

• P: Primes.

• E: Erdos’ Conjecture

• GT: Green-Tao Theorem
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The final spot Y is proven by considering

A = {1, 10, 11, 100, 101, 102, 1000, 1001, 1002, 1003, 10000, . . . }.

Then this contains arbitrarily long arithmetic progressions by design but the
sum of reciprocals is

∞∑
k=0

k∑
t=0

1
10k + t

≤
∞∑
k=0

k + 1
10k = 19

10 .

A key to these results seem to be Szemeredi’s regularity lemma. If we know
enough about our graph, then this lemma allows us to count the number of
copies of a subgraph with small error. A general mantra in using probabilistic
methods is

Every random variable X takes on a value ≥ E(X).

Another way to phrase this is

If the probability that a set of objects has a property is > 0, then
there exists at least one object with that property

or

If the probability that a set of objects has a property is < 1, then
there exists at least one object without that property

The key to this is Markov’s Inequality, which says that for a non-negative
random variable X with pdf f(x),

P (X ≥ a) ≤ E(X)
a

.

This follows quickly from

E(x) =
∫ ∞
−∞

xf(x)dx =
∫ ∞

0
xf(x)dx =

∫ a

0
xf(x)dx+

∫ ∞
a

xf(x)dx

≥
∫ ∞
a

xf(x)dx ≥
∫ ∞
a

af(x)dx = aProb(X ≥ a).

My absolute favorite example of this is the following theorem from Erdos:

Theorem 13 For all g, k, there exists a graph G containing cycles of length at
most g (i.e. girth = g) and chromatic number k.

Our interpretation of this theorem is that the chromatic number is a global
property of a graph. Containing a clique of size c bounds the chromatic number
χ(G) ≥ c, but if we have high girth, then locally, our graph looks like a path,
which has chromatic number 2. But this theorem shows that even with high
girth, we can have as large chromatic number as we’d like. A proper coloring
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of G gives a partition of the vertices of G into independent sets, so the ratio of
|V | and the size of the largest independent set in G gives an upper bound on
χ(G). This is what we will look at instead of directly looking at χ(G).

The proof sketch is that we will compute the probability of a random
graph having few enough cycles shorter than g and the probability of
a random graph having large enough independent sets. We show both
of these probabilities are larger than 1/2, so their sum is greater than 1, which
means there must exist a graph satisfying both properties. We then remove
enough vertices to remove all cycles smaller than g and show that the largest
independent set is still large enough to guarantee the chromatic number is at
least k. Done!

I spent a while typing up some kind of proof, but Jacob Fox covers it very
clearly and concisely.

7 The Kneser Graph
The Kneser graph K(n, k) has as its vertex set all k-element subsets of an n-
element set, with an edge between two vertices if their intersection is empty.
One thing this immediately implies is that K(n, k) is an empty graph if 2k > n.
This graph is very well-studied, and the thing that caught my eye is that its
fractional chromatic number is n/k.

So if we choose an abundant number n (meaning σ(n) > 2n) and consider
the graph G(n) = K(σ(n), n), the abundancy will be its fractional chromatic
number. We can ask, for example, if n and m are friends, how do G(n) and
G(m) relate to eachother? Their regular chromatic number is

χ(G(n)) = σ(n)− 2n+ 2,

which was proven by various people but first by Lovasz.
For example,

χ(G(30)) = 72− 60 + 2 = 14 = 2 ∗ 7

χ(G(140)) = 336− 280 + 2 = 58 = 2 ∗ 29

χ(G(2480)) = 5952− 4960 + 2 = 994 = 2 ∗ 7 ∗ 71

χ(G(6200)) = 14880− 12400 + 2 = 2482 = 2 ∗ 17 ∗ 73

χ(G(40640)) = 97536− 81280 + 2 = 16258 = 2 ∗ 11 ∗ 739

When n = 2k + 1, we get what’s called the odd graph Ok+1, which general-
izes the famous Petersen graph. It is an open problem whether Ok contains a
Hamiltonian cycle for all k, but it is conjectured to be true and proven to be
true for k ≤ 17.

In Triangle-free Hamiltonian Kneser graphs by Chen, 2003, it is shown
that if

n ≥ 1
2(3k + 1 +

√
5k2 − 2k + 1) ≈ 2.62k + 1
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thenK(n, k) contains a Hamiltonian path. It’s also known thatK(n, k) contains
a Hamiltonian path if there exists a non-negative integer a such that n = 2k+2a.
The odd graphs are the case of a = 0.

So the graph G(n) corresponds to the odd graph On+1 if σ(n) = 2n+ 1. It
can be shown that σ(n) = 2n+ 1 implies n is an odd perfect square. So if G(n)
is an odd graph, we know n is an odd perfect square. However, no such n seems
to actually exist!

But this gives some motivation to studying these graphs. If we can describe
the image of G(n) for all integers n, maybe we can prove an odd graph is
contained within. This would imply the existence of an n with σ(n) = 2n + 1.
Also, if we could show the image doesn’t contain any odd graphs, this would
prove no such n exists.

Another interesting fact about K(n, k) is that if n > ck, the graph does not
contain any c-cliques. Therefore, if we could, without referencing A(n), show
that G(n) does not contain any c-cliques, we can use these graphs to bound the
abundancy of n.

Since σ is multiplicative, we might hope for some kind of decomposition of
G(n) into its parts. However, remember that G(pk) is a trivial graph on σ(pk)
vertices, so the product over all prime power divisors would just give a trivial
graph on σ(n) vertices, which if n is abundant, is not equal to G(n).

So suppose that n is abundant and there exists a factorization n = ab with
both a, b abundant and gcd(a, b) = 1. Then does G(a)×G(b) = G(n)? This does
force the abundancy of n to be very high, i.e. A(n) > 4, since A(n) = A(a)A(b)
and both a and b are abundant.

Products of Kneser graphs have been pretty well studied. For example,
Independence number of products of Kneser graphs by Bresar and
Valencia-Pabon covers the size of the largest independent set of products of
Kneser graph, for the main four different graph products. Another cool result
on Kneser graphs is Friedgut establishing a removal lemma for Kneser graphs.

This type of removal lemma is related to Szemeredi’s theorem that we talked
about before. Roth’s theorem on 3-term arithmetic progressions was proved us-
ing a triangle removal lemma and the Hardy-Littlewood circle method. A more
general hypergraph removal lemma allowed Szemeredi’s more general theorem
on arbitrarily long arithmetic progressions in dense subsets of the integers. We’ll
continue to detail some facts about Kneser graphs here but the next section will
go back into Szemeredi’s theorem, its history, and specific cases.

Going back, we pretty much can’t expect any nice decomposition. Detail-
ing a nice bit of mathematical history, this is a StackExchange post asking
about strong product decompositions of Kneser graphs. And who else answers
but some leading graph theorists, Brendan McKay and Chris Godsil. Here is
Godsil’s answer.

Doerfler and Imrich and (independently) MacKenzie showed that any
connected graph has a unique factorization into graphs prime
relative to the strong product. It follows that if a connected graph
is not prime, its automorphism group is the direct product of two
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non-identity groups, or is a wreath product. But the automorphism
group of the Kneser graph K(v:k) is the symmetric group on points,
and this is neither a direct nor a wreath product.

Edit: As Brendan notes below, this argument only works for Kneser
graphs that are connected and not complete.

There is a polynomial time algorithm for decomposition relative to
the strong product, due to Feigenbaum and Schaeffer. It’s likely that
if you work through this you will find other ways to show that the
Kneser graphs are prime.

This shows that, at least with respect to the strong product, we can’t hope
for any kind of G(n) = G(a)×G(b) decomposition. Realistically, I should comb
through Godsil’s Algebraic Graph Theory to do a thorough refresher of this
material. He has a whole chapter on the Kneser graph!

8 Szemeredi’s Theorem

9 Back to Sigma
One interesting thing we came across while constructing AS(n) was that it-
erating our function next_node ended up giving a sequence of 1/σk(a) where
a = 4. This is OEIS sequence A007497. The few comments give a conjectured
asymptotic formula

1
2 log(n) < σn+1(2)

σn(2) < 2log(n)

They then list two conjectures about “stabilizing divisors” of a sort:

σn(2) ≡ 0 mod 9, n > 34

σn(2) ≡ 0 mod 222 ∗ 35 ∗ 5 ∗ 7 = 35672555520, n > 99

We’ll look at this in a few different ways. First, for n ≤ x, let’s plot the least
common divisor of σk(2) for k ≤ n. Here is the list of these values for x = 21:

[2, 6, 12, 84, 168, 840, 840, 840, 840, 3360, 30240, 302400, 1190548800,
76195123200, 624114254131200, 1248228508262400, 53673825855283200,
7675357097305497600, 7675357097305497600, 7675357097305497600,
7675357097305497600,15711455978184353587200]

And here are plots of its growth for x = 10 (log), x = 30, and x = 50 (both
loglog).
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This is so cool! This is such a great way to characterize the failure of σ to
distribute primes evenly.

We can look at the analogous situation without σ and consider lcm(1, 2, . . . , x).
We can describe this value by using Chebyshev’s second function:

ψ(x) =
∑
pk≤x

ln(p)

What’s the connection? We take the exponential of the psi function:

eψ(x) = e

( ∑
pk≤x

ln(p)

)
=
∏
pk≤x

eln(p) =
∏
pk≤x

p =
∏
p≤x

pap ,

where ap is the greatest exponent k so that pk ≤ x. But the least common
multiple of a set can be defined as

lcm(A) =
∏
p

pmax(νp(a))

so for the set A = {1, 2, . . . , x}, this maximum is the maximum power of p that
appears below x, i.e. ap. So

lcm(1, 2, . . . , x) = eψ(x)

These values up to x = 21 are
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[2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360,
360360, 360360, 720720, 12252240, 12252240, 232792560,
232792560, 232792560, 232792560, 5354228880]

And we see that lcm(σn(2)) grows much faster than lcm(1, . . . , x).

This also makes me wonder how many primes σn(2) generates as n grows.
If we do this for n ≤ 300, we get these primes, in the order they appear:

[2, 3, 7, 5, 31, 127, 8191, 43, 11, 13, 23, 89, 17, 3221, 179, 19,
151, 61, 73, 262657, 37, 11939, 199, 257, 337, 524287, 109, 1093, 67,
547, 137, 71, 241, 331, 41, 83, 131071, 599479, 2141, 29, 113, 2731,
683, 757, 379, 601, 1801, 53, 181, 43691, 47, 178481, 197, 223,
616318177, 898423, 4733, 5419, 112303, 263, 271, 7019, 397, 2113,
307, 2801, 467, 97, 157, 79, 431, 9719, 2099863, 2351, 4513, 13264529,
442151, 797161, 398581, 617, 103, 174763, 2796203, 5233, 2617, 3851,
107, 13367, 164511353, 557, 911, 15241, 7621, 2147483647, 15790321,
1361, 5801, 227, 967, 1201, 65537, 4432676798593, 201485309027, 7589,
2212471, 347, 797, 122921, 233, 1103, 2089, 4561, 6829, 2281, 163, 1063,
1871, 34511, 719, 19531, 1321, 661, 715827883, 59, 3033169, 32377, 43331,
1212847, 16189, 121369, 229, 1619, 631, 1597, 23311, 363889, 36389, 1213,
607, 673, 1181, 5229043, 829, 1307261, 313, 367, 193, 433, 38737, 2767,
173, 191, 409, 2143, 11119, 139, 281, 30941, 86171, 167, 5113, 2557, 1279,
368089, 36809, 881, 3191, 201961, 100981, 7213, 1001523179, 3607, 6361,
69431, 2384579, 20394401, 277, 1753, 3181, 3613, 877, 7321, 439, 499, 523,
179951, 3203431780337, 131, 136193, 145193, 3457, 22699, 61681, 457,
30841, 88741, 525313, 421, 2203, 44371, 211, 11093, 92737, 649657, 487,
521, 45319, 3500201, 3571, 583367, 3169, 317, 87211, 21803, 1609669,
145295143558111, 160967, 238972275589, 353, 1087, 23897227559, 311, 1861,
640333, 2521, 1613, 269, 1621, 32668561, 811, 19993, 769, 701, 70841, 953,
11807, 26317, 13159, 1723, 1777, 8951, 391151, 25781083, 373, 920753, 8209,
821, 6091, 121789, 228479, 48544121, 212885833, 283, 641, 1523, 21149,
292561, 7699, 193707721, 761838257287, 67927, 1401943, 7450297, 149, 5653,
1123, 14281, 293459, 12207031, 2932031007403, 9137, 8831418697, 761, 28537,
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252283, 20381027, 2305843009213693951, 751, 1069, 99907, 3121, 14951, 24977,
4036961, 2646507710984041, 8713, 672827, 151871210317, 581283643249112959,
619, 4357, 8011, 218834597, 3892029553, 1699, 2003, 2179, 20857, 21467,
2188993, 1789, 10429, 29581, 6481, 463, 9277, 4639, 2298041, 9361973132609,
449, 3691, 127669, 389621, 251, 4051, 64937, 1013, 10052678938039, 853, 36833,
16148168401, 709, 110563, 8269, 827, 658812288653553079, 350432068432741,
8563, 29189717, 159871, 1249, 3541, 102673, 4404047, 359, 4177, 9857737155463,
1307, 9839, 2857, 6529, 653, 1429, 14449, 1772893, 1009, 1171, 305175781, 101,
293, 3499, 43609, 3833, 2687, 154543, 202029703, 466344409, 1113491139767,
743, 6662063, 21523361, 25253713, 736435939, 2593, 71119, 138793, 12626857,
36821797, 97685839, 1297, 2393, 9181, 203659, 1416223, 599, 4591, 17351,
44257, 22129, 2213, 11447, 11489, 13842607235828485645766393, 383, 1009081991,
2011630471, 727, 5821, 10613, 571, 1786393878363164227858270210279, 70621,
18649457, 33909171296217181, 4271, 35311, 1146277171801, 2207, 302128933, 839,
16493, 180053, 2749, 70123, 22366891, 10039, 4278255361, 2139127681, 10589741,
13421, 14009, 34607, 153649, 2767631689, 33057806959, 2237, 154823, 732541,
276763169, 6451, 7793, 24571, 9225439, 6143, 8237, 7432339208719,
341117531003194129, 1373, 858293, 106551517, 745988807, 92904240109,
870035986098720987332873, 1163, 4673, 46601, 1005203, 111912126900880183,
863, 100801, 3331499, 10567201, 37159429, 2221, 3877, 48259, 5283601, 2641801,
1320901, 60041, 10007, 2664097031, 581173, 26417, 57912614113275649087721,
30707300495827, 349, 1999693963, 5483, 9161, 509, 2413941289, 2908363,
1493, 1741, 14437, 41203, 613, 7219, 10301, 733, 2083, 530713,
162259276829213363391578010288127, 443, 4057, 6740339310641,
3340762283952395329506327023033, 2029, 29363, 292141, 5465527,
9520972806333758431, 1905907469311277390886779, 2447, 6163, 21827051,
161461131023, 165768537521, 1455309949498963, 587, 14303, 46639, 154877,
256758988973, 593, 1733, 41641, 25646167, 13999, 169553, 8101, 268501, 1471,
8971, 18837001, 332207361361, 2243, 67759, 612928711, 6965099, 5153, 17293,
54410972897, 859, 8647, 9068495483, 1999, 66739, 420778751, 30327152671,
1117, 55897, 547889, 947723521, 2609, 6491257, 5347, 6271, 3981071, 82939,
42521761, 2251, 21260881, 563, 10630441, 38239, 519499, 2931542417, 239,
1039, 3256411, 2939, 62020897, 18584774046020617, 618970019642690137449562111,
1433, 1637, 2459, 12611, 10451851, 1051, 5167, 7487, 86656268566282183151,
8235109336690846723986161, 3413, 57251, 2261618993, 46919171622574949, 569,
1657, 2909, 19433, 30269, 5533189, 376936499, 251291, 419, 18041,
380808546861411923, 10303, 31734045571784327]

Plotting these values (loglog plot) shows that the primes we pick up are pretty
randomly small or large.
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If we plot the number of distinct primes dividing any σk(2) for k ≤ n, a.k.a
|{p|σk(2) : k ≤ n}|, we get

for n ≤ 300 and n ≤ 600.
The first positive integer not in the sequence σn(2) is 5, and σn(5) contains

6, so the next positive integer not in either sequence is 9. So here are plots of
σn(5) and σn(9) for n ≤ 300.

These look pretty much the same for 2, 5, or 9. But we’ve addressed this
before, I think. When looking at g(n) = gcd(n, σ(n)), we saw R.R. Hall’s
paper On The Probability that n and f(n) are relatively prime, where
he discussed certain arithmetic functions f(n) having probability 1

ζ(2) of being
relatively prime with n.

An interpretation of this is that f(n) distributes the primes as randomly
as they usually would be, since the probability that two integers are relatively
prime is 1/ζ(2) in general. So f(n) is random with respect to n. For example,
if f(n) is the sum of the distinct prime factors of n, then this holds.
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But Erdos showed that for f(n) = σ(n) or φ(n), we have∑
n≤x

gcd(n,f(n))=1

1 ≈ xe−γ0

logloglogx

And this tells us that the probability that gcd(n, f(n)) = 1 is 0. i.e. these func-
tions don’t distribute primes randomly - the probability that they are relatively
prime is 0. So the comparison would be counting

|{p|n : n ≤ x}| = |{p ≤ x}| ≈ x

logx
.

Instead of look at lcm(σn(2)) for n ≤ x, we could also just iterate through
σ(n) for n ≤ x, so let’s plot that just for curiosity. Similar to last time, we’ll
take x = 21. But we can actually compute more without iterating σ, so we’ll
also take x = 100, both loglog plot.

And here are the actual values up to x = 21:

[1, 1, 3, 12, 84, 84, 84, 168, 840, 10920, 32760, 32760, 32760, 32760,
32760, 32760, 1015560, 1015560, 1015560, 1015560, 1015560, 4062240]

And for fun, let’s plot all three, up to x = 21. We’ll let lcm(1, . . . , n) be blue,
lcm(σ(2), . . . , σn(2)) be red, and lcm(σ(1), . . . , σ(n)) be purple.

Basically for any arithmetic function f(n), we can think of lcm(f(1), . . . , f(n))
as telling us about the primes f generates, similar to the fact that

eψ(x) = lcm(1, . . . , n).
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Specifically, if we define
ψf (x) =

∑
pk|f(n)
n≤x

lnp,

then we’ll have
eψf (x) = lcm(f(1), . . . , f(n)).

Though there is something to be said. We take ψ(x) specifically because we
expect the density of primes below x to be 1

logx . If we expect the number of
primes f(n) generates for n ≤ x to be a different density, it would probably
make more sense to take a different weighted sum.

Regardless, we see lcm(1, . . . , x) grows faster than lcm(σ(1), . . . , σ(x)), so
ψ(x) should grow faster than ψσ(x). Finally, let’s address the stabilizing divi-
sors.

Idea: This is going to sound incredibly vague, because it is - I remember an-
other problem while computing generating functions related to pattern avoidance
where one such pattern gave way to a function that had stabilizing exponents.
But it was incredibly hard to do anything with. Then the solution came by “flip-
ping” it in some way and working from the other end. Try to read through your
old paper and see if you can remember...

To find a stabilizing divisor, this means we want some d so that d|σn(2) for
all n ≥ N for some N . Therefore, to find these, we should consider

gcd(σn(2), . . . , σx(2))

for decreasing n = x− 1, x− 2, . . . . Here is the code to do so:

x = 200
sn = 2
A = [sn]
for n in range(1,x+1):

sn = sigma(sn)
A.append(sn)

GA = []
for n in range(1,x):

GA.append(gcd(A[x-n:]))
print(GA)
list_plot(GA,plotjoined=true,scale=’loglog’)

For x = 200, these values are

[460219475891452319086074783871316787619430400000,
1945224450535715343817818984960491520000,
70804952154322984159641065226240000, 29489775990971671869904650240000,
1312757122105220435804160000, 119341556555020039618560000,
4773662262200801584742400, 4773662262200801584742400,
4773662262200801584742400, 4773662262200801584742400,
4773662262200801584742400, 4773662262200801584742400,
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4773662262200801584742400, 4773662262200801584742400,
1591220754066933861580800, 397805188516733465395200,
44200576501859273932800, 3400044346296867225600, 3400044346296867225600,
3400044346296867225600, 3400044346296867225600, 3400044346296867225600,
3320355806930534400, 3320355806930534400, 3320355806930534400,
3320355806930534400, 3320355806930534400, 3320355806930534400,
3320355806930534400, 3320355806930534400, 3320355806930534400,
3320355806930534400, 3320355806930534400, 3320355806930534400,
3320355806930534400, 3320355806930534400, 3320355806930534400,
3320355806930534400, 174755568785817600, 174755568785817600,
174755568785817600, 239719573094400, 239719573094400, 239719573094400,
239719573094400, 239719573094400, 239719573094400, 239719573094400,
239719573094400, 239719573094400, 239719573094400, 239719573094400,
239719573094400, 239719573094400, 239719573094400, 239719573094400,
239719573094400, 239719573094400, 239719573094400, 239719573094400,
239719573094400, 239719573094400, 239719573094400, 239719573094400,
239719573094400, 239719573094400, 239719573094400, 239719573094400,
749123665920, 749123665920, 749123665920, 749123665920, 107017666560,
107017666560, 107017666560, 107017666560, 107017666560, 107017666560,
107017666560, 107017666560, 107017666560, 107017666560, 107017666560,
107017666560, 107017666560, 107017666560, 107017666560, 107017666560,
107017666560, 107017666560, 107017666560, 35672555520, 35672555520,
35672555520, 35672555520, 35672555520, 35672555520, 35672555520, 35672555520,
35672555520, 35672555520, 11890851840, 11890851840, 11890851840, 11890851840,
11890851840, 11890851840, 11890851840, 594542592, 594542592, 594542592,
594542592, 594542592, 594542592, 594542592, 594542592, 594542592, 594542592,
594542592, 594542592, 594542592, 594542592, 594542592, 9289728, 9289728,
9289728, 9289728, 9289728, 9289728, 2322432, 2322432, 2322432, 2322432,
2322432, 2322432, 2322432, 110592, 110592, 110592, 110592, 110592, 110592,
110592, 110592, 110592, 110592, 110592, 110592, 36864, 36864, 36864, 36864,
9216, 9216, 9216, 9216, 2304, 2304, 2304, 2304, 2304, 2304, 2304, 576, 576,
576, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

You can see the value given in the OEIS comment 35672555520 appear fairly
close to the bottom of the list. The highest value we found that might be
conjectured to be a stabilized divisor is

3400044346296867225600 = 238 ∗ 312 ∗ 52 ∗ 72 ∗ 19

And a further conjecture might be that all primes eventually appear in a sta-
bilized divisor of σx(2). For example, going from x = 100 to 200 picked up the
prime 19. Extending to 300, we have a plausible stabilized divisor of

9404287311288374475502773350684845670400000000 = 271∗317∗58∗76∗11∗132∗192

so you see we picked up the primes 11 and 13. Here is the loglog plot for x = 200:
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Still no 17 though, let’s see if our computer can handle x = 500. It can! And
the highest plausible stabilized divisor is

36895434447080670424003349844587721403038874572858213631962784167360440936416885604352000000000

= 2130 ∗ 333 ∗ 59 ∗ 711 ∗ 115 ∗ 134 ∗ 172 ∗ 193 ∗ 23 ∗ 29 ∗ 31 ∗ 37 ∗ 181

Conjecture 4 For all primes p, there exists N so that p|σn(2) for all n ≥ N .

And as the powers seem to also accumulate, we could even conjecture that

Conjecture 5 For all primes p and integers k ≥ 1, there exists N so that
pk|σn(2) for all n ≥ N .

And finally, replacing 2 with any other integer seems to also not affect this so
much. For example, looking at σn(5) instead for x = 400 gives a (conjectural)
stabilized divisor of at least

13580150719726630362484005819442182164595826446512947200000000

= 287 ∗ 320 ∗ 58 ∗ 78 ∗ 112 ∗ 134 ∗ 172 ∗ 192 ∗ 31
In general, there are various theorems that analyze divisors of σ(n). Let’s

go through a few of them.

Theorem 14 The value σ(n) is odd if and only if n = 2rk2 for some r, k ≥ 1.

Proof. This boils down to two parts. First that σ(2r) = (2r+1 − 1) is odd for
all r ≥ 1, which is clear. The next is that if ` is odd, then σ(`) is odd if and
only if ` is a square.

To see this, we can pair up divisors of ` as d and `/d. If ` is not a square,
then every divisor has a pair, and

σ(`) =
∑
d<
√
`

d+ `

d
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Since d and `/d are odd, eadch summand is even, so σ(`) is even. If ` was an
odd square, then we’d have a single unmatched divisor

√
`, so

σ(`) =
√
`+

∑
d<
√
`

d+ `

d
= ODD + EV EN = ODD

Now we see that σ7(2) = 24 = 23 ∗ 3. So the conjecture that 2 is a stable
divisor of σn(2) is equivalent to showing that the odd part of σn(2) is not a
square for all n ≥ 7.

Naturally, this raises the question: For which n does a given prime q divide
σ(n)? The last theorem could be rephrased as

Theorem 15 σ(n) is divisible by 2 iff the odd part of n is not a square.

Let’s look at divisibility by q = 3. We’ll phrase this theorem in the same
way as the last one originally was (Theorem 14). Then we’ll give a proof, which
will give a guide for the general case, rephrased in a more accessible way.

Theorem 16 σ(n) is not divisible by 3 if and only if n = 3rt2s3u, where

• r ≥ 0 and t, s, u ≥ 1.

• p|t if and only if p ≡ −1 mod q

• p|s or p|u if and only if p ≡ 1 mod q

• u is square-free.

Proof 1 The idea here is to divide the set of primes p|n into residue classes
mod 3. Then since σ(n) is multiplicative, we have

σ(n) =
∏
p|n

σ(pνp(n)) =
∏
p|n

p≡0mod3

σ(pνp(n))
∏
p|n

p≡1mod3

σ(pνp(n))
∏
p|n

p≡−1mod3

σ(pνp(n))

The first term clearly only has p = 3 and since σ(3νp(n)) = 1 + 3 + · · ·+ 3νp(n),
we see σ(3νp(n)) ≡ 1 mod 3 for any choice of exponent. This gives the 3r term
in the theorem statement.

The second term has p ≡ 1 mod 3, so

σ(pνp(n)) = 1 + p+ · · ·+ pνp(n) ≡ νp(n) + 1 mod 3

So this is only divisible by 3 if νp(n) ≡ −1 mod 3. This means σ(pνp(n)) is not
divisible by 3 if νp(n) ≡ 0, 1 mod 3. Any p with exponent 0 mod 3 contributes
to the s3 term and any p with exponent 1 mod 3 will contribute to the s3 term
with a leftover square-free part u.

For the last part, if p ≡ −1 mod 3, then

σ(pνp(n)) = 1 + p+ p2 + · · ·+ pνp(n) ≡

{
0 mod 3 if νp(n) ≡ 1 mod 2
1 mod 3 if νp(n) ≡ 0 mod 2
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Therefore, any prime p ≡ −1 mod 3 must have νp(n) ≡ 0 mod 2 to not be
divisible by 3. This gives the t2 term in the theorem statement.

As we have covered all residue classes, this is a complete characterization.

The idea for a general proof is clear (and the intuitive choice!). If we care
about divisibility of σ(n) by q, then since σ is multiplicative, we really care about
divisibility of σ(pa) by q. Then σ(pa) = 1 + p + · · · + pa is easily determined
from the residue class p mod q. If p 6≡ 1 mod q, then p − 1 is invertible, so we
can write σ(pa) = pa+1−1

p−1 . Then this is equal to 0 mod q iff pa+1− 1 ≡ 0 mod q
iff pa+1 ≡ 1 mod q.

We usually define the order of an integer n mod q as the smallest k so
that nk ≡ 1 mod q. Notice that this is only well-defined when gcd(n, q) = 1.
We’ll make a slight change and say that Ordq(n) is defined as above in all
case except if Ordq(n) = 1, where we’ll instead say Ordq(n) = q. In other
words, if n ≡ 1 mod q, then we’ll say Ordq(n) = q. Together with the last
paragraph, this tell us that if p 6≡ 1 mod q, then q divides σ(pa) if and only if
a+ 1 ≡ 0 mod Ordq(p).

If p ≡ 1 mod q, then σ(pa) = 1 + p + · · ·+ pa ≡ a + 1 mod q. So q|σ(pa) if
and only if a + 1 ≡ 0 mod q. This is the reason why we define Ordq(p) = q in
this case! It allows us to state the very succinct theorem:

Theorem 17 A prime q divides σ(n) if and only if there exists a p|n such that

νp(n) + 1 ≡ 0 mod Ordq(p).

And since each such prime p contributes at least one factor of q, we have

Theorem 18 For all primes q, the exponent of q in σ(n) is at least

νq(σ(n)) ≤ |{p|n : νp(n) + 1 ≡ 0 mod q}|

Let’s test it! Instead of starting with an n, let’s build an n so that q = 5 will
divide σ(n). For this, we’d need some p|n so that νp(n) + 1 ≡ 0 mod q. Let’s
choose three! Let

n = 2337119

so
Ord5(2) = 4 and 3 + 1 ≡ 0 mod 4

Ord5(3) = 4 and 7 + 1 ≡ 0 mod 4

Ord5(11) = 5 and 9 + 1 ≡ 0 mod 5

Then
σ(n) = 26 ∗ 32 ∗ 53 ∗ 41 ∗ 3221 ∗ 13421

and there is that factor of 53. Awesome! Let’s test the other primes that appear.

Ord13421(2) = 2684 and 3 + 1 6≡ 0 mod 2684
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Ord13421(3) = 2684 and 7 + 1 6≡ 0 mod 2684
Ord13421(11) = 10 and 9 + 1 ≡ 0 mod 10

and
Ord3221(2) = 644 and 3 + 1 6≡ 0 mod 644
Ord3221(3) = 644 and 7 + 1 6≡ 0 mod 644
Ord3221(11) = 5 and 9 + 1 ≡ 0 mod 5

and
Ord41(2) = 20 and 3 + 1 6≡ 0 mod 20
Ord41(3) = 8 and 7 + 1 ≡ 0 mod 8

Ord41(11) = 40 and 9 + 1 6≡ 0 mod 40
and

Ord3(2) = 2 and 3 + 1 ≡ 0 mod 2
Ord3(11) = 2 and 9 + 1 ≡ 0 mod 2

and
Ord2(3) = 2 and 7 + 1 ≡ 0 mod 2
Ord2(11) = 2 and 9 + 1 ≡ 0 mod 2

From this, we get the approximation 22 ∗ 32 ∗ 53 ∗ 41 ∗ 3221 ∗ 13421, which is
only missing a factor of 24.

Another interesting case of partitioning a set of primes mod q is in the
Leibniz formula for π:

π

4 =
∞∑
n=0

(−1)n
2n+ 1 =

 ∏
p≡1 mod 4

p

p− 1

 ∏
p≡3 mod 4

p

p+ 1


10 Back to Abundancy 2
At the beginning, we wondered when rad(n)| n

g(n) , since this condition seems to
correlate to n being solitary. Now we might be in a position to better describe
g(n) = gcd(n, σ(n)). If q|n, then q|σ(n) if and only if there exists p|n so that

νp(n) + 1 ≡ 0 mod Ordq(p).

We can visualize this as a matrix where our rows and columns correspond to the
distinct prime divisors of n. In the spot (i, j), we place νpi(n)+1 mod Ordpj (pi),
except we place 1s all along the diagonal. Define this to beM(n). For example,

M(23 ∗ 5 ∗ 74 ∗ 11) =


1 0 1 4
0 1 2 2
1 1 1 5
0 1 1 1
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The number of zeros in a column j represents the minimum number of times
pj divides σ(n). In this case, we see that 5|σ(n) and 22|σ(n) and 7, 11 do not.
And indeed,

σ(23 ∗ 5 ∗ 74 ∗ 11) = 23 ∗ 33 ∗ 5 ∗ 2801.

This tells us without computing σ(n) that any friends of n must be multiples
of 7411 at least.

Here’s a fun question: What if M(n) is the ω(n) × ω(n) identity matrix?
Then for all distinct primes p, q|n, we have νp(n) + 1 ≡ 0 mod Ordq(p). For
example, if ω(n) = 2 and p = 3, q = 11, then Ord3(11) = 2 and Ord11(3) = 5,
so n = 113 ∗ 34 will give the identity matrix, meaning σ(n) will be divisible by
at least 11 ∗ 3 = 33. And

σ(113 ∗ 34) = 23 ∗ 3 ∗ 112 ∗ 61.

In general, ifM(n) is the identity matrix, then every column has ω(n) − 1
zeros, which means σ(n) is divisible by at least rad(n)ω(n)−1. This sequence for
n ≤ 5000000 begins

1, 96, 864, 6144, 7776, 55296, 69984, 393216, 497664, 629856, 3538944

This does not appear on OEIS but a related sequence A173615 does, consisting of
those n for which σ(n) is divisible by rad(n)2. There, they cite two papers: W.
Sierpinski, Number Of Divisors And Their Sum, Elementary theory
of numbers, Warszawa, 1964. and F. Luca et al, On integers for
which the sum of divisors is the square of the squarefree core.

In the second paper listed above, the authors mention the concept of a prime-
perfect number n, for which rad(n) = rad(σ(n)), introduced and analyzed by
Paul Pollack and Carl Pomerance. With Theorem 17 in mind, we can say that
a number n is prime-perfect if both of the following hold.

• For all q|n, there exists a distinct p|n so that νp(n) + 1 ≡ 0 mod Ordq(p).

• For any prime q not dividing n, we have νp(n) + 1 6≡ 0 mod Ordq(p) for
all p|n.

Pollack and Pomerance show that the density of prime perfect numbers less
than x is x1/3+o(1). Can we deduce that from these two statements?

And interestingly enough, all of those n above have ω(n) = 2, which is why
entering a partial sequence got that OEIS entry. But the entries in their list that
aren’t in ours are those n for which rad(n)2|σ(n) but ω(n) > 2. For ω(n) ≥ 3,
do there exist any n so that rad(n)ω(n)−1 divides σ(n)? It seems like the answer
is no. Let’s fix ω(n) = 3 and see what we get.

Then n = paqbrc and we want to see if σ(n) is divisible by (pqr)2. For
p2|σ(n), we’d need p2|σ(qb), p2|σ(rc), or (p|σ(qb) and p|σ(rc)).

If the last case holds for all three primes, this would mean

νq(n) + 1 ≡ 0 mod Ordp(q) νr(n) + 1 ≡ 0 mod Ordp(r)
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νp(n) + 1 ≡ 0 mod Ordq(p) νr(n) + 1 ≡ 0 mod Ordq(r)

νp(n) + 1 ≡ 0 mod Ordr(p) νq(n) + 1 ≡ 0 mod Ordr(q)

Paul Pollack has a talk on multiplicative orders mod p that might be helpful.
Let’s look through it. The first problem he introduces is looking at the distri-
bution of Ordq(a) as q varies through the primes. He doesn’t have this, but as
always, I love a good visual. So here are plots for a = 2, 3, 4, 5, 6 with q ≤ 100.
We’ve connected the points to emphasize the transitions but colored the points
red to distinguish the actual values. Also remember that where Ordq(a) = 1
in usual texts, we’re defining Ordq(a) = q, which means the maximum value of
the plots tell us what prime we’re focusing on. Also we define Ordq(a) = 0 if
gcd(q, a) 6= 1.
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This looks kind of like that plot for rad(n), where the values cluster around
the lines x/m for m = n

rad(n)

For the plots of Ordq(a), all the top lines seem to be approximately Cxlogx
for some C ∼ 1.15, except for a = 4, in which the coefficient seems to be halved,
which could have to do with 4 = 22. It’s easy to show that

Ordq(as) = Ordq(a)
gcd(Ordq(a), s)

So the plot for a = 8 = 23 actually looks like the others, while a = 16 has the
halved coefficient again.

And just like the rad(n) plot, the Ordq(a) plot over q seems to fall into the
curves (C/m)xlogx for m ≥ 1. For a = 6,
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Of course, x here is not the prime itself but the index of the prime. The xth
prime is approximately xlogx by the PNT, so the top line is actually just the
primes q for which Ordq(a) = q − 1. In other words, the top line consists of
those primes for which a is a primitive root.

Artin’s conjecture on primitive roots states that for all integers a that are
not a perfect square or −1, we will have Ordq(a) = q − 1 for infinitely many
primes q. Our plots certainly seem to suggest this is true. This would also be
supported by our plots of 4 and 16 being halved, meaning there is no such q for
which Ordq(4) = q − 1. Specifically,

Conjecture 6 (Artin’s Conjecture on Primitive Roots) Let a = a0b
2 with

a0 6= 1 square-free and S(a) be the set of primes for which a is a primitive root.
Then

1. S(a) has positive density inside the set of primes. In particular, S(a) is
infinite.

2. If a0 6= 1 mod 4, this density is independent of a and equals Artin’s con-
stant

CArtin =
∏
p

(
1− 1

p(p− 1)

)
≈ 0.373955

This focus on not being a perfect square reminds me of our previous work on
σ(n) being even if and only if the odd part of n was not a perfect square. That
is, we could restate Artin’s conjecture in terms of the divisibility of σ(n). If σ(n)
is even, then the odd part of n is not a perfect square, and Artin’s Conjecture
would imply n/2ν2(n) is a primitive root of infinitely many primes q. Moreso, if
ν2(n) is odd, then n is a primitive root for infinitely many primes q.

A generalization of this constant by P.J. Stephens in "Prime Divisor of
Second-Order Linear Recurrences, I." would give the density of the set
T (a, b) of primes dividing ak − b for some k, relative to the set of primes:

CS =
∏
p

(
1− p

p3 − 1

)
≈ 0.5759599 . . . ,
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assuming a and b are multiplicatively independent, meaning aAbB = 1 implies
A = B = 0.

These constants are explicitly related by

CS =
∏
p

(
CArtin +

(
1− p2

p2(p− 1)

))(
p

p+ 1 + 1/p

)
So what’s the lesson? The questions concerning A(n) are hard because they

relate to multiplicative orders of integers, which are difficult to work with. But
not impossible! Lots of smart people have made good progress in this area. For
example, Pollack! We’ll continue his talk and do some exposition.

One more thing I want to do is to read through Artin’s paper to see how he
derives this constant. It reminds me of the “care-free constant”∏

p

(
1− 1

p(p+ 1)

)
≈ 0.704442200

that is double the coefficient of x2 in
∑
n≤x

rad(n) and that we proved was double

the coefficient of x2 in
∑
n≤x

`(n) where `(n) =
α(n)∑
k=1

radk(n).

Our previous characterization of divisibility of σ(pa) by q is that

q|σ(pa)⇐⇒ a+ 1 ≡ 0 mod Ordq(p).

If we want to get exact prime powers of σ(pa), the same reasoning tells us
that if p− 1 is invertible mod qb, then

q|σ(pa)⇐⇒ a+ 1 ≡ 0 mod Ordqb(p).

But a more general statement is that

σ(pa) =
∏

q|pa+1−1

qνq(p
a+1−1)−νq(p−1),

which reduced to the previous statement because p − 1 being invertible means
νq(p− 1) = 0. After writing this, it became obvious, as

σ(pa) = pa+1 − 1
p− 1

so it consists of all primes dividing pa+1 − 1 more than p− 1.
Therefore, we can write σ(n) as

σ(n) =
∏
p|n

∏
q|pνp(n)+1

qνq(p
a+1−1)−νq(p−1)

We can extend this to A(n) by dividing by n. To describe this, we’ll split the
abundancy index into the numerator and denominator of its reduced form.
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Let E(n, q) be the max of 0 and ∑
p|n

q|pνp(n)+1−1

νq(pνp(n)+1 − 1)− νq(p− 1)

− νq(n)

Notice that if q does not divide pνp(n)+1 − 1, then E(n, q) = 0. Otherwise, it
will be the exponent of q in the numerator of the reduced fraction of A(n). So
define

N(n) =
∏

q prime

qE(n,q)

Then if we define
E(n, q) = max(0, νq(n)− E(n, q)),

we can also define
D(n) =

∏
q prime

qE(n,q)

and we will have A(n) = N(n)/D(n) in reduced form.
Let’s introduce a few definitions:

• We call n and m upper-semi-friends if N(n) = N(m).

• We call n and m lower-semi-friends if D(n) = D(m).

• Then n and m are friends if they are both upper and lower semi-friends.

• We call n upper/lower-solitary if it has no upper/lower-semi-friends re-
spectively.

It almost seems like there are no upper-solitary or lower-solitary numbers.
Let’s go ahead and plot N(n) and D(n) for n ≤ 10000. We’ll plot them sepa-
rately and then plot them on top of each other with NL blue and DL red. We’ll
also plot A(n) again, just for reference.
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Let’s plot their maxima. First, we’ll do A(n).

Then we’ll do NL and DL.
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It’s clear that
max
n≤x

D(n) = max
n≤x
g(n)=1

n

but what about N(n)? Searching the sequence of ns on OEIS gives A239973:
Sequence, starting with 1, of increasing numbers such that both the numerator
and the denominator of the abundancy index, sigma(n)/n are strictly increasing
and gives an initial list

1, 2, 3, 4, 7, 8, 16, 21, 27, 32, 36, 50, 63, 64, 93, 98, 100, 128, 144, 256, 324, 392, 400,

512, 576, 784, 800, 900, 1296, 1600, 1936, 2304, 2916, 3600, 5184, 6400, 7744, 8100,
9216, 10404, 11664, 14400, 17424, 19600, 20736, 22500, 30276, 32400, 41616, 46656
They question whether any more odd numbers than 1, 3, 7, 21, 27, 63, 93 appear.
Perhaps our characterization of when 2|σ(n) could provide some insight into
this. They also question whether every number in this sequence has g(n) = 1.

Doing the same for D(n) confirms what we thought, and gives A014567:
Numbers k such that k and sigma(k) are relatively prime. Remember the asymp-
totic growth proven by Erdos,∑

n≤x
g(n)=1

1 ∼ xeγ0

logloglogx
,

tells us the natural density of {n : g(n) = 1} is 0. Niven proved in his paper
discussed in the first section that for any k, the density of {n : g(n) ≤ k} is 0.

If we assume g(n) = 1 for the maximum values of N(n), then this comes
down to maximizing σ(n). The characterization we had before is that

qb|σ(n)⇐⇒ qb+νq(p−1)|(pνp(n)+1 − 1)

So we can look through primes p ≤ x for which pa+1 − 1 has many large prime
power divisors and construct n =

∏
p p

a to maximize σ(n).
The following plots consists of points (i, a) where pai < x, for x = 500, 2000.
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Let’s maybe try to take a bit of a combinatorial look at this maximization
(though I do know there’s almost certainly optimization results that could help
here, but...).

Problem 3 How do you choose exponents e = (e1, . . . , eπ(x)) so that

n =
∏
p

peii

is maximized?

Problem 4 How do you choose exponents (e1, . . . , eπ(x)) so that

σ(n) =
∏
p

σ(peii )

is maximized?

Let’s introduce a swapping function and see how it effects these values. Let
sw(e, i, j) be the tuple of exponents with ei replaced with ei+1 and ej replaced
with ej − 1. So

sw(e, i, j) = (e1, . . . , ei−1, ei + 1, ei+1, . . . , ej−1, ej − 1, ej+1, . . . , eπ(x))

In terms of n, this means
sw(e, i, j) = pi

pj
n

If n = 22 ∗ 3 ∗ 52 = 300, then e = (2, 1, 2) and

sw(e, 1, 2) = (3, 0, 2) = 23 ∗ 52 = 200

sw(e, 1, 3) = (3, 1, 1) = 23 ∗ 3 ∗ 5 = 120
sw(e, 2, 3) = (2, 2, 1) = 22 ∗ 32 ∗ 5 = 180

sw2(e, 1, 3) = (4, 1) = 24 ∗ 3 = 48
And notice then that applying sw(e, 1, 2) to the last term gives (5) = 25. In

fact, notice that sw is invariant on Ω(n) =
∑
i ei, so for any n, we can repeatedly

apply different swaps to load all exponents onto a single prime. In other words,
for a fixed n, its orbit contains at its extremes the values

pΩ(n)

For example, we have swaps like

sw(e, 2, 1) = (1, 2, 2) = 2 ∗ 32 ∗ 52 = 450

sw(e, 3, 1) = (1, 1, 3) = 2 ∗ 3 ∗ 53 = 750
sw(e, 3, 2) = (2, 0, 3) = 22 ∗ 53 = 500
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sw2(e, 3, 1) = (0, 1, 4) = 3 ∗ 54 = 1875

This definitely leads me to wanting to form a graph...and I’ve got to mention
the critical group!

This was my second serious research project I ever did. We studied chip-
firing on graphs, an action which allowed us to form a group from the graph
called the Critical Group or Smith Group. This all relates to analyzing the
cokernel of certain matrices, which is a topic that appears in a lot of spots.

So what is chip-firing? Fix a graph G = (V,E) and a labeling c : V →
{0, 1, 2, . . . } of the vertices. We define the chip-firing action on the graph as
follows. Firing at a vertex v sends one chip along each edge adjacent to v, so
c′(v) = c(v)− deg(v) and c′(w) = c(w) + 1 for all vertices w adjacent to v.

We consider two labelings (configurations) c and c′ to be equivalent if there
is a series of chip-firing that leads you from c to c′. It turns out, this equivalence
relation gives a group structure on the set of all configurations on G.

With an algebraic point of view, this group is essentially the cokernel of a
matrix related to G. For the Smith Group, we take the cokernel of the adjacency
matrix, and for the Critical Group, we take the cokernel of the Laplacian matrix.

The name critical group is also replaced with Jacobian or Picard Group
because of its relation to the Picard Group of a symmetric monoidal category.

A few nice examples are

1. The critical group K(Cn) of the cycle graph on n vertices is Z/nZ.

2. The critical group of Kneser graphs on 2-element subsets was studied by
my friend Ian Hill with my old research advisor Josh Ducey.

3. Our own project with a friend Noah Watson characterized the critical
group of the Rook’s graph as

K(Rn) = (Z/2nZ)(n−2)2+1 ⊕ (Z/2n2Z)2(n−2)

4. And probably one of the coolest things I’ve seen is Dr. Josh Ducey proving
the form of the critical group of the missing Moore graph, which we don’t
even know whether or not it exists!

After writing all that, I realized that if are trying to use chip-firing to denote
our swap, then we’d need exactly two vertices pi and pj connected by an edge.
Doing the swap is firing one of these vertices. But this graph for n would then
be literally the disjoint union of edges (pi, pj) where we don’t identify two edges
with coordinate pi. It would have to just ω(n)2 vertices with

(
ω(n)

2
)
edges.

The critical group of the edge consists of two classes (0, 0) and (1, 0), i.e.
whether the sum of the vertices is even or odd. So the critical group of this
graph would be

(Z/2Z)(
ω(n)

2 ).

But this REALLY does not capture what we want.

68

https://arxiv.org/pdf/1507.06583.pdf
https://arxiv.org/pdf/1707.09115.pdf
https://arxiv.org/pdf/1507.06583.pdf
https://www.sciencedirect.com/science/article/pii/S0012365X16303351


So let’s go back and define a graph S(n) whose vertices correspond to all
possible swaps starting from n, which an edge between two vertices if there is a
single swap that takes you from one to another.

For example, if n = pa is a prime power, we have no swaps, so S(n) is a
single vertex. If n = paqb, then we can swap all the way down to pa+b and up
to qa+b. So if ω(n) = 2, we have that S(n) is a path graph on Ω(n) + 1 vertices
with endpoints pΩ(n)

1 and pΩ(n)
2 .

As well as the fact that Ω(n) is an invariant, we also have that all swaps
have radical dividing rad(n). This raises the natural question:

Question 4 For a fixed integer n, how many integers m are there with Ω(m) =
Ω(n) and rad(m)|rad(n)?

I really want to write up a program for that, but I’m trying to stay on topic!
Let’s begin coding up this graph S(n). The following will generate the first level
of this graph, applying a single swap.

def S(n):
G = Graph()
E=[]
for i in range(1,om(n)+1):

for j in range(1,om(n)+1):
if i != j:

E.append((n,sw(n,i,j)))
G.add_edges(E)
return G

For example, S(2022) = S(2 ∗ 3 ∗ 337) is

And the swapping function sw(n, i, j) is defined as follows:
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def sw(n,i,j):
exp = [p[1] for p in list(factor(n))]
if i > om(n) or j > om(n) or i < 1 or j < 1:

return(’Out of Bounds’)
else:

exp[i-1] = exp[i-1]+1
exp[j-1] = exp[j-1]-1

return prod([list(factor(n))[i][0]^exp[i] for i in range(om(n))])

Now we need to implement a recursion to fill the tree out until done. Here
is the final code, an example with 2022, and then an explanation of the code.

def S(n):
G = Graph()
E=[]
TotalVerts = [n]
NewVerts = []
for i in range(1,om(n)+1):

for j in range(1,om(n)+1):
if i != j:

E.append((n,sw(n,i,j)))
NewVerts.append(sw(n,i,j))

while len(NewVerts) != 0:
for nn in NewVerts:

NewVerts.remove(nn)
print(NewVerts)
for i in range(1,om(nn)+1):

for j in range(1,om(nn)+1):
if i != j:

E.append((nn,sw(nn,i,j)))
if sw(nn,i,j) not in TotalVerts:

NewVerts.append(sw(nn,i,j))
TotalVerts.append(sw(nn,i,j))

G.add_edges(E)
return G
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Which is honestly just awesome. It brings to mind a dozen possible conjectures
(planar/genus/degrees/regularity/euler’s formula/critical group,chromatic num-
ber/poly, what are the max/min values of the vertices, etc), but let’s check a
few more before we do that.

But first, let’s go through the code.
WARNING: SEEMS LIKE THIS COULDNOT BE CODED COR-

RECTLY, KEEPING SECTION TO REVISE.
Let’s start at the first for loop. We added two lines after E.append((n, sw(n, i, j)))

to add that vertex to a set called NewV erts, which we initiate at the top with
NewV erts = []. And we add it to a list of TotalV erts = [n], which we initiate
with n.

So we begin by generating this star. Then we go through the list NewV erts
that we made, remove it from NewVerts, and then go through the same process
we just did with n. At the end, we check if sw(nn, i, j) is already in TotalVerts
so we know whether to add it to NewVerts or not.

Finally, to keep this going until we’re done, we nest it all in a while loop as
while len(NewV erts) ! = 0. Also, the print statements are for troubleshooting
and can be removed.

Let’s do some examples. Here is S(397953), for which ω(397953) = 2, so
S(397953) is a path graph of length 8 = Ω(397953) + 1, as discussed before.
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What about ω(n) = 3? Well, we will have these paths for each pair of prime
divisors. So we get a triangle-shaped graph. The square-free n with ω(n) all
look like S(3 ∗ 29 ∗ 41) or S(30) above

Testing properties for various graphs gives the following conjectures.

Conjecture 7 For all n ≥ 1, we have

• S(n) is planar if and only if ω(n) ≤ 3.

• The chromatic number χ(S(n)) = ω(n) is equal to the number of distinct
prime divisors of n.

This would mean that having ω(n) = 3 would allow us to use Euler’s Formula

v − e+ f = 2

where v is the number of vertices, e is the number of edges, and f is the number
of faces.

Let’s go ahead and plot the numbers of vertices (blue) and the number of
edges (red) for S(n) for n ≤ 100.
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I did not expect it, but the number of vertices actually appears as OEIS
sequence A316314: Number of distinct nonempty-subset-averages of the integer
partition with Heinz number n., so we have some reading to do on what that
means! The sequence of numbers of edges does not appear on OEIS.

Another thing I’m very interested in is the number of triangles in S(n),
because they seem quite abundant. Of course, if ω(n) ≤ 2, then this count is
zero. So here is a plot for n < 500 with ω(n) > 2. Here is the list and the plot.

[3, 3, 10, 3, 3, 3, 10, 10, 3, 3, 3, 3, 19, 10, 3, 10, 3, 10, 10,
3, 10, 3, 19, 3, 3, 19, 3, 3, 3, 3, 10, 10, 52, 10, 3, 10, 3, 3,
10, 3, 30, 3, 19, 3, 3, 10, 19, 3, 19, 3, 10, 19, 3, 3, 3, 3, 10,
19, 10, 10, 3, 19, 10, 3, 3, 52, 30, 10, 10, 3, 10, 10, 3, 3, 30,
10, 3, 3, 10, 3, 19, 10, 3, 52, 19, 3, 3, 3, 19, 3, 10, 3, 128, 3,
3, 3, 3, 3, 3, 19, 3, 10, 19, 3, 19, 10, 52, 3, 19, 3, 3, 10, 43,
3, 10, 10, 3, 10, 3]
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And just as a cool aside, I wanted to mention how we can count triangles.
If A is the adjacency matrix of a graph G, then the (i, j) entry in Ak counts the
number of paths of length k from vertex i to j. So the diagonal entries (i, i) of
the matrix A3 counts the number of paths of length 3 from i back to itself. But
this is exactly a triangle!

Therefore, we can take the trace of A3 and find the number of triangles in
G, except for the fact that we overcounted slightly. Each triangle has 3 vertices,
so we must divide by 3!. Therefore, the number of triangles in G is

Tr(A3)/6.

Now, let’s plot a few more examples.
With n = 23 ∗ 7 ∗ 112, then S(n) is

With n = 2 ∗ 5 ∗ 17 ∗ 29, we have

You can see that this does not look planar, and indeed it is not.
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But what does a triangle in S(n) mean? It means there are three vertices
v1, v2, v3 that can be swapped in a three-cycle. For example, take

p2qr, sw(p2qr, 2, 1) = pq2r, sw(pq2r, 3, 2) = pqr2, sw(pqr2, 1, 3) = p2qr.

More generally, for any three primes pi, pj , pt, we have the 3-cycle

sw(v1, j, i) = v2

sw(v2, t, j) = v3

sw(v3, t, i) = v1

And this will always work provided the exponent on pi is at least 2. Recall our
definition of radk(n), the product of primes p for which pk|n. Therefore, the
primes we’re interested in are those in rad2(v). Then we can choose any other
pair of prime numbers. This gives ω(rad2(v))

(
ω(n)−1

2
)
. But this overcounts. For

example, the second part of the product could involve a prime that is also in
rad2(v).

Let’s go back to something mentioned long ago: The Handshaking Lemma!
This tells us that

2|E| =
∑
v∈V

deg(v)

The degree of v seems like it should be a simple ω(v)2 − ω(v), but this isn’t
totally true. We note that sw(n, i, j) is only invertible if sw(n, i, j) is divisible
by pi and pj . In that case,

sw(sw(n, i, j), j, i) = n

But if pj ||n, then sw(n, i, j) will not be divisible by pj , so we won’t be able to
recover the prime pj from here. If we have a vertex v with rad2(v) = rad(v)
(or equivalently, β(v) ≥ 2), then all swaps from v will be invertible, so deg(v) =
ω(v)2 − ω(v). And for each prime dividing n that doesn’t divide v, we have an
incoming swap that is non-invertible as long as there is a prime dividing v with
exponent at least 2. This adds (ω(n) − ω(v))ω(rad2(v)) to the degree. So in
total,

deg(v) = ω(v)2 − ω(v) + (ω(n)− ω(v))ω(rad2(v))
For example, this shows why deg(9604) has degree 4 in S(23 ∗ 7 ∗ 112). We have
ω(n) = 3, ω(v) = 2, and ω(rad2(v)) = 2, so

deg(9604) = 22 − 2 + (3− 2)(2) = 2 + 2 = 4.

For the endpoint vertices pΩ(n), we have only incoming swaps, so

deg(pΩ(n)) = ω(n)− 1,

assuming Ω(n) ≥ 2. Applying the handshaking theorem tells us

2|E| =
∑
v∈V

deg(v) =
∑
v∈V

ω(v)2 − ω(v) + (ω(n)− ω(v))ω(rad2(v))
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Consider a vertex v ∈ V for the graph S(n). Then rad(v)|rad(n) and Ω(v) =
Ω(n). And if these conditions hold, then v is a vertex in S(n). So the answer
to Question 4, asking for the number of integers v with those two properties, is
exactly the number of vertices of S(n).

And analyzing this is easy if we just remember partitions and compositions.
If we have a vertex, then the exponents form a weak integer composition of Ω(n)
into ω(n) parts. A standard stars-and-bars argument shows that the number of
such compositions is (

Ω(n) + ω(n)− 1
ω(n)− 1

)
and therefore, this is the size of the vertex set of S(n).

Here’s a theorem that could be helpful in proving S(n) is not planar if
ω(n) > 3.

Theorem 19 If G is a simple planar graph, then

|E| ≤ 3n− 6

When we mentioned Conjecture 7, we mentioned Euler’s formula for planar
graphs that says v − e + f = 2. To prove the theorem, we maximize this for
e. The number of edges will be maximal when all faces are triangles, otherwise
we could add an edge to bisect a non-triangular region. Since each triangle has
three edges, we might expect e = 3f , but each edge will be contained in two
faces, so we actually have 2e = 3f . Plugging this into Euler’s formula gives

v − e+ (2/3)e = 2

v − (1/3)e = 2

e = 3v − 6

So showing this bound is exceeded if ω(n) > 3 would prove these graphs are not
planar.

Let’s try to count edges. First, if ω(n) = 1, we have no edges. If ω(n) = 2,
then the number of edges is Ω(n) + 1, since we have swaps from pΩ(n) to qΩ(n).
The number of vertices in this case is Ω(n). If ω(n) = 3, then our graphs get
interesting. Take S(2 ∗ 52 ∗ 11) = S(550) and S(33 ∗ 5 ∗ 72) = S(6615).
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So we can start at a corner and move along its rows adding up edges: 0 +
0 + 2 + 3 + 4 = 9. If we do this starting at all 3 corners, we get 27 edges for
S(550) and 3(0 + 0 + 2 + 3 + 4 + 5 + 6) = 60 for S(6615). And this in general
gives us our theorem.

Theorem 20 For ω(n) = 3, the number of edges of S(n) is

3(0 + 0 + 2 + · · ·+ Ω(n)) = 3
((

Ω(n) + 1
2

)
− 1
)

We will still have to prove this, of course. But first, let’s see if we can say
anything about ω(n) = 4. Fun fact, if you want to be able to move the vertices
and actually play with the graph, use show(G, layout = ‘spring′) for a graph
G instead of plot(G).

Similar to before, we seem to have lots of triangles and then an empty cube
at each of the four corners. But I just remembered an old strategy - look at the
degree sequence and count the appearances of each degree. There tends to be a
pattern that is clearer in that way. Then we can use the Handshaking Lemma
to count the edges that way!

For example, if ω(n) = 2, then

2|E| =
∑
v∈V

deg(v) =
∑
v∈V

ω(v)2 − ω(v) + (ω(n)− ω(v))ω(rad2(v))

=
∑
v∈V
ω(v)=2

2 +
∑
v∈V
ω(v)=1

ω(rad2(v))

All vertices are of the form v = paqb, so we’ll have Ω(n)−1 vertices with ω(n) = 2
and the two endpoints pΩ(n) and qΩ(n) with ω(n) = 1 have ω(rad2(v)) = 1, which
means

|E| = 1
2(2(Ω(n)− 1) + 2) = Ω(n)

If Ω(n) = 3, we can split the sum into three parts,
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2|E| =
∑
v∈V
ω(v)=3

6 +
∑
v∈V
ω(v)=2

(2 + ω(rad2(v))) +
∑
v∈V
ω(v)=1

2ω(rad2(v))

In general, since Ω(n) ≥ 2, any vertex with ω(v) = 1 will have ω(rad2(v)) = 1.
And we will have ω(n) such vertices, for a total contribution of

2ω(n)

If ω(v) = ω(n), then the exponents of v are a (non-weak) composition of
Ω(n) into ω(n) parts, of which there are

(Ω(n)−1
ω(n)−1

)
, for a total contribution of(

Ω(n)− 1
ω(n)− 1

)
ω(n)(ω(n)− 1)

Let’s go back to the ω(n) = 3 case specifically. This tells us we have ω(v) = 1,
we get a contribution of 6. When ω(n) = 3, we have 6

(Ω(n)−1
2
)
. If ω(v) = 2,

then v = pai p
b
j where a + b form a composition of Ω(n) and we have

(3
2
)

= 3
choices for the pair of primes. This gives a total of 3

(Ω(n)−1
2−1

)
= 3(Ω(n) − 1)

such vertices. But we need to know ω(rad2(v)), which will be 1 only if a = 1 or
b = 1. So we have a total contribution of

(3Ω(n)− 5)(2 + 2) + 2(2 + 1) = 12Ω(n)− 14

Therefore,

|E| = 1
2

(
6 + 12Ω(n)− 14 + 6

(
Ω(n)− 1

2

))
= 3

((
Ω(n) + 1

2

)
− 1
)

So we recover the same count we got before! But, this will hopefully get us the
edge count for all S(n). The strategy is clear, split it by ω(v) and count how
many v there are.

2|E| =
∑
v∈V

deg(v) =
∑
v∈V

ω(v)2 − ω(v) + (ω(n)− ω(v))ω(rad2(v))

=
ω(n)∑
k=1

∑
v∈V
ω(v)=k

k2 − k + (ω(n)− k)ω(rad2(v))

=
ω(n)∑
k=1

k2 − k +
∑
v∈V
ω(v)=k

(ω(n)− k)ω(rad2(v))

Now we’ll split the inner sum based on ω(rad2(v)) given ω(v) = k.

2|E| =
ω(n)∑
k=1

k2 − k +
k∑
h=1

∑
v∈V
ω(v)=k

ω(rad2(v))=h

(ω(n)− k)h
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Now if ω(v) = k and ω(rad2(v)) = h, then from the k primes dividing v, we
choose k − h primes for the square-free part of v. For the remaining part, we
have h primes whose exponents are all at least 2 and add up to Ω(n)− k + h.

So we can subtract one from each of those exponents, and we get a (non-
weak) composition of Ω(n)− k into h parts. Putting all this together, we have(

k

k − h

)(
Ω(n)− k − 1

h− 1

)
vertices v.

Plugging this into our handshaking lemma sum:

2|E| =
ω(n)∑
k=1

k2 − k +
k∑
h=1

(
k

k − h

)(
Ω(n)− k − 1

h− 1

)
(ω(n)− k)h

=
ω(n)∑
k=1

k2 − k + (ω(n)− k)
k∑
h=1

(
k

k − h

)(
Ω(n)− k − 1

h− 1

)
h

=
ω(n)∑
k=1

k2 − k + (ω(n)− k)
k∑
h=1

(
k

k − h

)(
Ω(n)− k − 1

h− 1

)
h

Vandermonde’s Convolution Identity might be helpful: it tells us that for
any m,n, we have (

m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
Setting m = Ω(n)− k and n = k, we have that

k∑
h=0

(
k

k − h

)(
Ω(n)− k

h

)
=
(

Ω(n)
k

)
,

which comes from the fact that

(1 + x)k(1 + x)Ω(n)−k = (1 + x)Ω(n)

But the inside isn’t quite that. Let’s manipulate it slightly. We have

(ω(n)−k)
k∑
h=1

(
k

k − h

)(
Ω(n)− k − 1

h− 1

)
h = ω(n)− k

Ω(n)− k

k∑
h=1

(
k

k − h

)(
Ω(n)− k

h

)
h2

The last sum with the h2 term comes from taking a derivative of (1+x)Ω(n),
multiplying by x, taking another derivative, and multiplying by x again:

Ω(n)x(Ω(n)x+ 1)(1 + x)Ω(n)−2
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Isolating the coefficient of xk gets Ω(n)
(Ω(n)−2

k−1
)
from the Ω(n)x, and then gets

Ω(n)2(Ω(n)−2
k−2

)
from the Ω(n)2x2. This tells us

k∑
h=1

(
k

k − h

)(
Ω(n)− k

h

)
h2 = Ω(n)

(
Ω(n)− 2
k − 1

)
+ Ω(n)2

(
Ω(n)− 2
k − 2

)
So we finally get another expression for the number of edges as

2|E| =
ω(n)∑
k=1

k2 − k +
(
ω(n)− k
Ω(n)− k

)(
Ω(n)

(
Ω(n)− 2
k − 1

)
+ Ω(n)2

(
Ω(n)− 2
k − 2

))
Also, this is a good time to bring in one of the coolest characterizations

ever - the graph minor theorem (or Robertson-Seymour Theorem). Here is the
motivating example.

Theorem 21 (Kuratowski’s Theorem) A graph G is planar if and only if
it does not contain a subdivision of K5 or K3,3 as a subgraph.

This spawned dozens of very interesting questions and theorems and meth-
ods, extending to matroids and other mathematical objects. To see how we’ll
use it, we’ll look at the graph S(2∗3∗5∗7) = S(210) and a non-planar subgraph.

The subgraph is essentially two iterations of the algorithm to build our graph.
This is symmetric, so look at the top portion of the right graph and consider the
copy of K4 given by (60, 90, 150, 210). Then we just need to find one vertex con-
nected to each of these by disjoint paths. Take 225, which is already connected to
90 and 150. Then 225 is connected to 210 by (225, 525, 210). Finally, we use the
large outside loop to connect 225 to 60 with (225, 315, 441, 294, 196, 140, 350, 100, 60).
Therefore, S(210) contains a subdivision of K5 as a graph and is non-planar.

This gives a good idea for a general strategy. The idea of containing a
subgraph that is a subdivision of K5 is equivalent to showing there is a graph
homomorphism from K5 to our graph. A graph homomorphism between two
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graphs G and H is defined as a map between vertices φ : V (G) → V (H) such
that edges are mapped to edges. Importantly, we don’t require non-edges be
mapped to non-edges, so two vertices disconnected in G could be connected in
φ(G).

We’ll go about proving these non-planar by proving it for S(n) for square-
free n with ω(n) ≥ 4, and then showing that all n that are not square-free have
some square-free n′ so that there exists a graph homomorphism of S(n′) into
S(n), showing S(n) is non-planar.

Lemma 1 There exists a homomorphism φ : S(n) → S(m) if and only if
ω(n) ≤ ω(m). And S(n) and S(m) are homomorphically equivalent iff ω(n) =
ω(m) and isomorphic iff Ω(n) = Ω(m) as well.

Here is an example to work with, S(2∗3∗5) = S(30) and S(2∗3∗52) = S(150).
The first list is a homomorphism from S(30) → S(150) and the second is a
homomorphism from S(150)→ S(30).

{30: 150, 20: 60, 12: 60, 45: 60, 18: 100, 75: 100, 50: 100,
27: 150, 125: 150, 8: 150}

{150: 30, 100: 20, 60: 50, 225: 50, 90: 20, 375: 20, 250: 50,
40: 30, 135: 30, 625: 30, 24: 20, 36: 30, 54: 50, 81: 20, 16: 50}

So this would tell us that S(n) → S(m) if and only if ω(m) ≥ ω(n). So
proving S(n) is non-planar for ω(n) ≥ 4 is equivalent to showing that a single
graph with ω(n) = 4 is non-planar. For example, S(2 ∗ 3 ∗ 5 ∗ 7), which we
already did! QED. That turned out simpler than we expected, though we still
need to prove the lemma.

Now, thanks to some wonderfully written code from Noah Watson from
around 2015, we can also compute the critical groups of these graphs and see if
there are any patterns!
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The critical group of a tree is trivial, so we only need to look at ω(n) ≥ 3.
I also swear I remember reading bounding the size of the factors of the critical
group by the number of triangles in the graph, but I can’t find it right now.
Anyway, the critical group decomposes as a product of finite cyclic groups whose
order arise as elementary divisors of the Laplacian matrix of our graph. Let’s
define all that!

The Laplacian matrix of a graph G is L = D − A where D is a diagonal
matrix with deg(v) in spot (v, v) and A is the adjacency matrix of G. Then
this cokernel has a single infinite term, and the finite (torsion) part of it is the
critical group K(G) of G.

The cokernel of L is a finitely generated module over the PID Z, so the
structure theorem guarantees us a decomposition into cyclic factors, and those
are our elementary divisors. We can also get them via Smith Normal Form,
which Richard Stanley and others have many interesting talks on.

We’ve established that S(n) is determined up to isomorphism by the pair
(ω(n),Ω(n)), so we’ll write K(a, b) with a ≤ b to stand for K(n) for any n with
ω(n) = a and Ω(n) = b. Let’s compute K(a, a) first.

K(3, 3) = (Z/11Z)× (Z/88Z)

K(4, 4) = (Z/2Z)× (Z/283960Z)× (Z/22432840Z)× (Z/269194080Z)

and the elementary divisors for K(5, 5) are

[4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 80, 70320, 933568109040,
246520286782810093200, 246520286782810093200,
246520286782810093200, 739560860348430279600]

That is, they get large very quick when adding a new prime! What if we fix
ω(n) and iterate Ω(n).

K(3, 4) = (Z/3Z)× (Z/414Z)2

K(3, 5) = (Z/4044Z)× (Z/339696Z)

K(3, 6) = (Z/6Z)× (Z/72462Z)× (Z/43114890Z)

Going back for a moment to the edge count, I recalled Turan’s theorem,
which tells us

Theorem 22 (Turan’s Theorem) If H = Kr is the complete graph on r
vertices, then the maximal number of edges in a Kr-free graph on n vertices is(

1− 1
r − 1

)
n2

2

This might be helpful because it seems that S(n) never contains a K4. Let’s
see if we can prove this.

Proposition 1 For all n, the graph S(n) is K4-free.
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Proof 2 If S(n) contains a copy of K4, then we have four vertices v0, v1, v2, v3,
all connected by swaps. We’ll assume that we have edges between

(v0, v2), (v0, v1), (v0, v3), (v2, v3), (v1, v2)

and then show that (v1, v3) cannot also be an edge.

STOP: I’m unsure why the four vertices

(p2
1p

2
2p

2
3p

2
4)

(p3
1p2p

2
3p

2
4)

(p3
1p

2
2p

1
3p

2
4)

(p3
1p

2
2p

2
3p4)

wouldn’t provide a K4 inside S(n)? Maybe my program generating S(n) is
messed up and not adding all the edges it can.

11 An Exposition of Some Papers

12 On Conjecture 1
Though the concept of upper/lower-semi friends is fun in my opinion, the actual
use of E(n, q) and all that seems to boil back down to σ(n) anyway. For example,
here is a proof of Greening’s Theorem.

Theorem 23 If gcd(n, σ(n)) = 1, then n is solitary.

If gcd(n, σ(n)) = 1, then we have that νq(pνp(n)+1−1)−νq(p−1) > 0 implies
νq(n) = 0. So for any q|σ(n), we’ll have E(n, q) = νq(σ(n)), and otherwise
E(n, q) = 0. So N(n) = σ(n).

For any p|n, we know p does not divide σ(n), so E(n, p) = 0 and E(n, p) =
νp(n), which means D(n) = n. If n had a friend m, then D(m) = D(n) implies
m = n, so we’re done: n is solitary.

Can we apply any of what we’ve learned to try to prove Loomis’ theorem?
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Theorem 24 If n is odd and gcd(n2, σ(n2)) is square-free, then n2 is solitary.

Let gcd(n2, σ(n2)) = p1 . . . pt. We discussed before that an odd square has
an odd sum of divisors, so n2 and σ(n2) are both odd. If m is a friend of n,
then m = n2

p1...pt
` for some integer ` 6≡ 0 mod p1 . . . pt, and since νp(n2) ≥ 2 for

all p|n, we have rad(n)|rad(m).
What is the relationship for abundancies of n and m when rad(n)|rad(m)?

Remember that if n|m, then A(n) < A(m). Via testing, it is not enough to say
that rad(n)|rad(m) and Ω(n) < Ω(m) implies A(n) < A(m). It seems to need
a bit more nuance.

I’m not sure this is the key, but let’s try. We’ll define the radical average
(rad_avg) of n to be the unique value of k so that

n = rad(n)k.

Of course, we can explicitly solve for k and get

rad_avg(n) = log(n)
log(rad(n)) =

∑
p|n νp(n)log(p)∑

p|n log(p)

We write it out in the last step to emphasize it really is an average of the
exponents, but a weighted average (by logp) instead of the usual arithmetic
average Ω(n)/ω(n).

Here is a plot of radical averages for n ≤ 100000. Notice the square-free
integers form the line y = 1.

and here is a plot of
∑
n≤x rad_avg(n) for x = 100000.
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The value here is 1.1109, so it really seems like it might have average order 1.
In addition to the square-free statement, we can also say that rad_avg(pa) = 1

a
for all primes p and positive integers a. That means a portion of our sum is∑

n≤x
squarefree

1 +
∑

2≤a≤x

∑
p≤x1/a

1
a

The prime number theorem tells us the inner sum is approximately

x1/a

alog(x1/a) = x

alogx

and the first sum is approximately x/ζ(2). So the portion we’re describing
becomes

x

ζ(2) + x

logx

∑
2≤a≤x

1
a

= x

ζ(2) + xlog(log(x))
log(x) ,

which isn’t enough to deduce the average order being 1, just bounded below by
1/ζ(2). But it seems the logical choice would be the to split the sum based on
ω(n). For ω(n) = 2, we have

rad_avg(paqb) = alog(p) + blog(q)
log(p) + log(q)

Basic estimate of log(p) < log(q) gives(
a+ b

2

)
log(p)
log(q) ≤ rad_avg(paqb) ≤

(
a+ b

2

)
log(q)
log(p)

And in general, choosing the smallest and largest primes p1, pω(n), we have(
Ω(n)
ω(n)

)
log(p1)
log(pω(n))

≤ rad_avg(paqb) ≤
(

Ω(n)
ω(n)

)
log(pω(n))
log(p1)
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Denoting Ω(n)/ω(n) as arith_avg(n), we get

log(p1)
log(pω(n))

≤ rad_avg(n)
arith_avg(n) ≤

log(pω(n))
log(p1)

Now where in this interval does it truly lie? To get a feel for this, We’ll
count how many n have their ratio of radical and arithmetic averages closer to
the lower bound than the upper. This seems to often be the case!

x = 100 0.63

x = 1000 0.80

x = 10000 0.8693

x = 100000 0.90203

x = 1000000 0.920868

It certainly seems like this tends to 1.
Anyway, it seems like the radical-average doesn’t follow any nice patterns

with A(n) that are immediately clear. For example, increasing lists of friends
don’t have increasing radical average. The radical average of σ(n) could be
higher or lower than the radical average for n. In fact, the proportion of n with
rad_avg(n) < rad_avg(σ(n)) is

x = 1000 0.7

x = 10000 0.7789

x = 100000 0.82637

So perhaps this proportion will also go to 1?
Let’s go back to the conjecture. I just realized something obvious I hadn’t

calculated yet. Greening’s Criterion is proven from the fact that n|m implies
A(n) < A(m). So let’s look at the set

U(n) = {m | A(n) < A(m)}

Naturally, we write U(n, x) when looking for m ≤ x. Then the previous fact
shows that U(n) contains {2n, 3n, . . . }. This shows the density of U(n) is at
least 1/n. Can we characterize any other subsets of U(n)? If the density of
U(n) is greater than 1/n, we could have some non-trivial condition that n is
solitary differing from Greening’s Criterion.

Plotting U(n, x) for n = 2 (blue), n = 3 (red), n = 4 (green) and x = 10000
shows the density most likely is higher. The bold lines are U(n, x) and the
lighter lines are x/n. The true density estimates at x = 105 are 0.57178 for
n = 2, and 0.68132 for n = 3, and 0.39274 for n = 4.
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Plotting these densities for n ≤ 100 gives the following plot.

If the density of U(n) was strictly greater than 1/n, then we could remove
the set {2n, 3n, . . . } and still have a set of positive density. Szemeredi’s Theo-
rem then would tell us U(n) will have arbitrarily long arithmethic progressions.
However, we have no such guarantee for infinitely long arithmetic progressions.
In fact, we can construct sets with density 1 with no infinite arithmetic pro-
gressions; specifically by removing one term from each arithmetic progression,
so that the set of terms has density 0.

So does the existence of arbitrarily long arithmetic progressions help con-
struct any solitary tests? That’s iffy. The {2n, 3n, . . . } progression being infinite
allows us to say that n|m⇒ A(n) < A(m) even though m could be arbitrarily
large.

In fact, having any infinite arithmetic sequence {a+kd} ∈ U(n) would allow
us to derive a condition for a number to be solitary: if m ≡ a mod d, then
A(n) < A(m), so m and n can’t be friends. Therefore, if some condition on
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friendship forces the friend to be m ≡ a mod d, this would show n is solitary.
And it would increase our knowledge of the density of U(n) by 1

d −
1

lcm(n,d) .
Though arbitrarily long, the arithmetic progressions guaranteed by Sze-

meredi are finite. Results of a more infinite nature concerning sets of positive
density should also be looked at! In particular, again motivated by Erdos, it
can be proven that any set A of positive density contains, for any k, a sumset
B1 + B2 + · · · + Bk, where Bi ⊂ N are infinite. The sumset being defined as
you’d expect:

B1 + · · ·+Bk = {b1 + · · ·+ bk | bi ∈ Bi}.

Proof methods for Szemeredi’s Theorem often use Ergodic theory and this
interaction has been strengthened since. We can look at Bryan Kra’s Ergodic
Methods in Additive Combinatorics for an overview, and also at one of his (and
others’) paper giving a proof of the statement in the last paragraph. However,
that is a tough paper for me - I have a lot to read about to be prepared for that!

Anyway, let’s go ahead and plot ∑
m≤x

m∈U(n)

1

for n = 2, . . . , 10. The evenly divided colored line at the bottom is the legend,
i.e. 2 is red, 3 is orange, 4 is yellow, and so on.

And although it’s hard to tell some colors apart, let’s ramp up the number
of examples to 50?
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Looking at the right-most sliver, we get this wonderful swapping of colors,
which is really a sequence of numbers arranged in order of increasing density of
U(n) (at least up to x = 10000 estimate).

And with little gaps in between! But I’d guess that these densities would be
dense in the interval (0, 1) if we considered all positive integers.

And I’ll include it because the code is cool (the rainbow(M) option is quite
nice!):

x=10000
M = 50
P = list_plot(U(2,x),color=rainbow(M)[0])
C = line([(0,5),(x/(M-1),5)],color=rainbow(M)[0],thickness=4)
for n in range(3,M+1):

P += list_plot(U(n,x),color=rainbow(M)[n-2])
C += line([((x/(M-1))*(n-2),5),((x/(M-1))*(n-1),5)],color=rainbow(M)[n-2],thickness=4)

plot(P+C)

Here are the plots of these densities in increasing order for the first 500 and
2000 integers, with x = 10000. And because I accidentally ran the second one
with the points connected (which took 37m29s), I’ll include that third.
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And here are plots of the corresponding integers, one with points not joined
and one with them joined:

and the full list:

[360, 420, 480, 240, 180, 120, 336, 300, 252, 432, 168, 288, 60,
144, 216, 396, 210, 264, 468, 72, 312, 450, 84, 270, 384, 408, 192,
456, 96, 330, 324, 90, 108, 390, 48, 280, 132, 378, 36, 156, 24,
462, 150, 126, 204, 228, 440, 276, 348, 372, 400, 30, 140, 444, 492,
320, 198, 160, 12, 234, 294, 80, 200, 306, 220, 42, 342, 448, 260,
414, 40, 224, 486, 162, 340, 54, 112, 380, 460, 500, 66, 308, 392,
100, 18, 78, 364, 352, 56, 350, 416, 102, 476, 176, 114, 20, 490,
138, 208, 174, 186, 70, 222, 272, 246, 258, 88, 282, 304, 318, 196,
354, 366, 402, 426, 438, 474, 498, 368, 104, 464, 6, 28, 496, 256,
128, 136, 64, 315, 152, 32, 110, 184, 232, 130, 16, 248, 296, 484,
328, 344, 376, 424, 44, 472, 170, 488, 190, 495, 52, 230, 8, 250,
154, 290, 50, 310, 68, 370, 182, 410, 76, 430, 470, 105, 92, 238,
116, 124, 266, 10, 148, 164, 405, 225, 172, 322, 188, 212, 236, 244,
135, 268, 284, 292, 406, 316, 332, 356, 434, 388, 404, 412, 428,
436, 452, 286, 4, 165, 98, 45, 374, 195, 418, 14, 442, 494, 255, 189,
285, 441, 345, 375, 231, 435, 75, 465, 63, 242, 273, 22, 338, 297,
26, 357, 399, 15, 351, 483, 34, 38, 99, 459, 429, 46, 117, 58, 147,
62, 74, 82, 86, 94, 153, 106, 118, 122, 21, 134, 142, 146, 171, 158,
166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302,
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314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 207, 422, 446, 454,
458, 466, 478, 482, 2, 243, 385, 261, 81, 279, 333, 27, 369, 387,
455, 423, 477, 363, 33, 9, 39, 175, 51, 57, 245, 69, 87, 93, 35, 111,
123, 129, 141, 159, 177, 183, 201, 275, 213, 219, 237, 249, 267, 291,
303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 325,
3, 425, 55, 475, 65, 85, 95, 115, 125, 77, 145, 25, 155, 185, 91,
205, 215, 235, 265, 295, 305, 335, 355, 365, 395, 415, 445, 485, 119,
133, 5, 161, 203, 217, 143, 259, 287, 301, 329, 343, 371, 49, 413, 427,
469, 497, 187, 209, 7, 221, 253, 247, 319, 341, 299, 407, 451, 473,
323, 377, 403, 481, 391, 121, 437, 493, 11, 169, 13, 289, 17, 361, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337,
347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421,
431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499]

And I realized my code for U(n, x) has the condition “ifA(m) > A(n)′′,
so I was computing the abundancy (i.e. factorizing/sum of divisors/division)
of n for each value of m. Storing “ab = A(n)′′ at the beginning and writing
“ifA(m) > ab′′ literally reduced the run-time down to 10m5s. Wild! Maybe we
go ahead and try for 10000 integers! We’ll also jump x to 100000. And after an
hour and a half, I ran out of memory!

I really wonder how this looks not just as as plot more integers but as our
estimate goes to the real value as x → ∞. For example, does that gap around
0.5, 0.6 persist? Well, how can we even describe this? Primes should be at the
bottom of the list, which means maybe the order of this list is correlated to
either ω(n) (red) or Ω(n) (blue).

Ok, we have to try to push this computer! We’ll plot the first 2000 integers
with x = 20000. Took about 30 minutes for each graph!
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This makes me realize I’ve never done the same for the abundancy index
itself. So here are two plots; the first is {A(n) | n ≤ 10000} in increasing order
and the second is the corresponding plot of integers n.

Notice, for example, the first bar representing the prime numbers below
10000. There seems to be other spots where we get these lines, but with more
randomness, like between (2800, 3200) and (4300, 5000). Taking this list of
integers ≤ 300000 with ordered by abundancy index and calculating ω(n) (red)
and Ω(n) (blue) gives

And just for fun, let’s also plot σ(n) and φ(n) for this list.

And here are plots of the number of divisors function.
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Ok, so let’s try to summarize some trends.

• It seems that A(n) may be correlated to ω(n) vaguely, meaning that if
you fix ω(n), there is some minimum index that n must achieve.

• A similar thing seems to hold for Ω(n), perhaps slightly stronger. We see
that it may be true as well that if you fix a value of Ω(n) or ω(n), there
may be some maximum index n can achieve in this list.

• While the plots for σ(n) and φ(n) bounce all around, we see that general
A(n) is positively correlated with σ(n), which makes sense, and negatively
correlated with φ(n), which also makes sense, considering our previous
work showing that A(n) < n/φ(n). So the larger φ(n) is, the smaller
A(n) must be.

• The number of divisors seems to be positively correlated to A(n), though
moreso on the minimum index side. It seems like maybe if you’re far
enough along in the list, you have at least a certain amount of divisors,
which would seem to make sense. But even with a small number of divi-
sors, it seems you can have very large abundancy.

13 Return from Hiatus
So I ended up taking a bit of a break! It’s November 12, 2022. To start, let’s
recall the goal of studying conditions to ensure a number is solitary. The most
basic condition is Greening’s Criterion, which says that

gcd(n, σ(n)) = 1 =⇒ n solitary.

A result from Loomis (2015) says that

n odd and gcd(n2, σ(n2)) squarefree =⇒ n solitary.
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I can’t access the paper without paying, so I’m just going to try to dedicate this
section to proving this result.

One fact that we can recognize is that n2 being an odd square implies that
σ(n2) is odd. If n2 has a friend m, then A(m) = A(n2), which means

n2

g(n2) = m

g(m) and
σ(n2)
g(n2) = σ(m)

g(m)

Since g(n2) = gcd(n2, σ(n2)) is square-free, we have that g(n2) = p1 . . . pt.
As p2

i |n2 for each i, the only way for g(n2) to be square-free is if each prime
pi exactly divides σ(n2). This means σ(m)/g(m) is relatively prime to g(n2).
It also means that n2 almost divides m, but could fail by at most rad(n).
Specifically,

m = m′
t∏
i=1

p
νpi (n

2)+api
i

∏
p|n
p 6=pi

pνp(n2)+ap

where api ≥ −1 for i = 1, . . . , t, ap ≥ 0 for p 6= pi and gcd(m′, n) = 1.
If api ≥ 0 for all i, then n2|m, which contradicts friendship. So for at least

one i, we have api = −1. Let I be a non-empty subset of {1, . . . , t} corresponding
to the indices for which api = −1. Then

m = m′
∏
i∈I

p
νpi (n

2)−1
i

∏
i 6∈I

p
νpi (n

2)+api
i

∏
p|n
p6=pi

pνp(n2)+ap

Writing n2 in the same decomposition and taking A on both sides gives the
following: ∏

i∈I
A(pνpi (n

2)
i )

∏
i6∈I

A(pνpi (n
2)

i )
∏
p|n
p6=pi

A(pνp(n2)) =

= A(m′)
∏
i∈I
A(pνpi (n

2)−1
i )

∏
i6∈I

A(pνpi (n
2)+api

i )
∏
p|n
p 6=pi

A(pνp(n2)+ap)

Isolating A(m′) gives

A(m′) =
∏
i∈I

A(pνpi (n
2)

i )
A(pνpi (n

2)−1
i )

∏
i 6∈I

A(pνpi (n
2)

i )
A(pνpi (n

2)+api
i )

∏
p|n
p 6=pi

A(pνp(n2))
A(pνp(n2)+ap)

In general,

A(pa)
A(pb) = pa+1 − 1

pb+1 − 1 p
b−a = pb+1 − pb−a

pb+1 − 1 ≈ 1− 1
pa+1 + 1

pb+1

When a > b, this is an under-estimate, and when a < b, it is an over-estimate.
I can never decide whether I want to dig into the notation-heavy stuff

somehow or try to look at more data to look for patterns. Let’s do the sec-
ond for a second. If m is a potential friend of n, then n/g(n) divides m,
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so A(n/g(n)) < A(m). But this doesn’t immediately help. The question of
whether n has a friend is a question of whether there exists some positive inte-
ger k so that A(k(n/g(n))) = A(g(n)(n/g(n))).

Let’s define the pair (a, b) to be n-friendly if A(a(n/g(n))) = A(b(n/g(n)))
and let F (n) ⊂ Z+ × Z+ be the set of n-friendly pairs. Looking at some basic
properties, F (n) is an equivalence relation, inherited from equality, and we have
the diagonal embedding Z+ → F (n).

Let’s do an example: (3, 14) ∈ F (2) since A(6) = A(28). More generally, if a
and b are friends, then any divisor d of gcd(a, b) gives rise to a point (a/d, b/d) ∈
F (n) for any n with n/g(n) = d. Take a = 80 and b = 200, and let d = 10. We
could choose n = 20, so (8, 20) ∈ F (20).

How many n ≤ x have n/g(n) for some fixed d? Looking at the distribution
for x = 106, we have

mean = 243801 median = 140717 mode = [419, 659] stdv = 263172

And we can see this major right-skew in the histogram and plot:

And we’d expect this because the points in the plot of n/g(n) group into lines
y = X/m for m = 1, 2, . . . , with X = n lying on this line if g(n) = m. Then
fixing n/g(n) = d is like drawing a horizontal line and picking up a point from
each line we cross. We’d cross X/m at X = md, so we’d cross x/d lines if we’re
looking at n ≤ x.

But we only actually pick up a point if g(md) = d. Counting the set of
m that satisfy is exactly what Hall did in the paper we looked at in the very
beginning, On the probability that n and f(n) are relatively prime III .
So we’ve essentially gotten back to there.

Going back to the sets F (n), notice that fixing the line a = n/g(n) means
(a, b) ∈ F (n) if and only if b is a friend of n. So if n is solitary, this line will
return a single point (a, g(n)). Are there other lines that we can say have few
points?

Let’s do a few plots! For n = 2 and x = 200, we get 7 distinct points

[(3, 14), (6, 117), (15, 70), (20, 112), (33, 154), (39, 182), (40, 100), (42, 135)]

with plot
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For n = 3 and x = 300, we get 5 distinct points

[(4, 78), (28, 90), (40, 224), (45, 273), (80, 200)]

with plot

For n = 4 and x = 400, we get 8 distinct points

[(7, 124), (10, 56), (20, 50), (21, 372), (30, 168), (60, 150), (140, 350), (216, 234)]

with plot
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Another thing to notice is that while a = g(n) in F (n) gives a line of friends
for n, we can also encompass all friendly numbers by looking at F (1), since (a, b)
is 1-friendly if and only if a and b are a friendly pair. Plotting this for x = 400
gives 8 distinct points

[(6, 28), (12, 234), (30, 140), (40, 224), (66, 308), (78, 364), (80, 200), (84, 270)]

with plot

Let’s do something fun and plot these on top of each other for n = 1, 2, 3, 4, 5
with x = 400, with colors (from red to purple) indicating the value of n.

And for n up to 10 and x = 1000, we get 138 total distinct pairs, with plot
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Adding a third coordinate to indicate the value of n that they came from, we
get a total of 214, meaning we have a decent amount of repeats in pairs. This
list is

{(138, 644, 5), (15, 70, 2), (112, 280, 10), (28, 496, 3),
(165, 924, 8), (6, 28, 1), (114, 532, 5), (6, 28, 10), (272, 680, 10),
(20, 112, 2), (360, 900, 2), (864, 936, 1), (135, 744, 2), (10, 56, 4),
(141, 658, 2), (260, 650, 4), (6, 496, 5), (115, 644, 8), (864, 936, 10),
(80, 200, 1), (30, 140, 5), (170, 425, 8), (496, 546, 3), (78, 364, 5),
(432, 468, 2), (798, 980, 7), (96, 104, 9), (84, 270, 1), (28, 496, 5),
(93, 434, 2), (21, 372, 4), (42, 744, 2), (123, 574, 2), (288, 312, 3),
(20, 390, 3), (80, 200, 3), (112, 280, 5), (480, 520, 9), (240, 600, 3),
(210, 525, 8), (40, 224, 3), (20, 50, 4), (102, 476, 1), (6, 28, 5),
(272, 680, 5), (102, 476, 10), (75, 350, 2), (864, 936, 5), (213, 994, 2),
(375, 775, 9), (12, 234, 7), (340, 850, 4), (66, 308, 1), (280, 700, 2),
(180, 450, 4), (30, 585, 2), (135, 819, 2), (30, 75, 8), (16, 40, 10),
(3, 248, 2), (48, 120, 10), (310, 775, 8), (66, 308, 10), (165, 770, 2),
(28, 496, 9), (90, 496, 3), (39, 182, 2), (108, 117, 8), (6, 117, 2),
(186, 868, 6), (864, 936, 7), (28, 546, 3), (80, 200, 7), (40, 100, 2),
(3, 14, 2), (240, 600, 7), (7, 124, 4), (135, 819, 4), (150, 700, 6),
(368, 920, 10), (14, 248, 2), (60, 150, 4), (42, 819, 2), (57, 266, 2),
(102, 476, 5), (110, 616, 4), (6, 496, 7), (48, 120, 5), (80, 200, 9),
(380, 950, 4), (16, 40, 5), (66, 308, 5), (540, 585, 8), (195, 910, 2),
(240, 600, 9), (336, 840, 10), (55, 308, 8), (40, 224, 9), (129, 602, 2),
(120, 672, 9), (744, 819, 2), (114, 532, 6), (186, 868, 1), (390, 975, 8),
(111, 518, 2), (230, 575, 8), (186, 868, 10), (159, 742, 2), (4, 78, 3),
(30, 168, 4), (10, 25, 8), (30, 140, 6), (78, 364, 6), (150, 700, 1),
(140, 350, 4), (35, 620, 4), (290, 725, 8), (150, 700, 10), (368, 920, 5),
(28, 496, 6), (90, 504, 4), (5, 28, 8), (120, 300, 2), (170, 952, 4),
(85, 476, 8), (330, 825, 8), (208, 520, 10), (65, 364, 8), (110, 275, 8),
(12, 234, 6), (145, 812, 8), (216, 234, 4), (120, 728, 9), (14, 931, 4),
(336, 840, 5), (304, 760, 10), (114, 532, 1), (6, 28, 6), (756, 819, 8),
(186, 868, 5), (174, 812, 6), (864, 936, 6), (30, 140, 1), (78, 364, 1),
(80, 200, 6), (95, 532, 8), (240, 600, 6), (150, 700, 5), (28, 496, 1),
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(138, 644, 6), (40, 224, 6), (220, 550, 4), (120, 672, 6), (135, 819, 6),
(45, 252, 8), (370, 925, 8), (155, 868, 8), (208, 520, 5), (45, 273, 3),
(176, 440, 10), (12, 234, 1), (6, 496, 6), (130, 728, 4), (12, 234, 10),
(304, 760, 5), (15, 91, 9), (183, 854, 2), (69, 322, 2), (135, 819, 8),
(102, 476, 6), (174, 812, 1), (144, 360, 10), (174, 812, 10), (42, 135, 2),
(33, 154, 2), (240, 600, 1), (201, 938, 2), (66, 308, 6), (138, 644, 1),
(87, 406, 2), (40, 224, 1), (138, 644, 10), (135, 819, 1), (120, 672, 1),
(90, 546, 3), (15, 84, 8), (176, 440, 5), (44, 858, 3), (60, 364, 9),
(28, 90, 3), (6, 496, 1), (90, 225, 8), (60, 336, 2), (177, 826, 2),
(672, 728, 9), (12, 234, 5), (270, 675, 8), (6, 496, 10), (30, 140, 10),
(130, 325, 8), (78, 364, 10), (120, 672, 3), (84, 270, 6), (135, 756, 8),
(28, 496, 10), (114, 532, 10), (8, 532, 7), (144, 360, 5), (174, 812, 5),
(51, 238, 2), (308, 990, 3), (190, 475, 8), (30, 182, 9), (70, 175, 8)}

Similar to the trick of showing that friendly numbers have a positive den-
sity, we can say that any friendly pair (a, b) will appear in F (n) for all n with
gcd(n/g(n), lcm(a, b)) = 1. But now with ordered pairs, this doesn’t really give
us anything except that the friendly pair (a, b) is contained in

⋃
n F (n), which

we know since (a, b) ∈ F (1).
The more interesting question is what the density of

⋃
n F (n) ⊆ Z+×Z+ is.

The points seem to almost form lines, with the colors swapping randomly, and
some points scattered off any apparent line.

14 A return to Graph Theory
I’ve spent a few days trying to look through algebraic methods that might be
helpful in encoding σ(n) and as usual, my interests turned to Graph Theory.
Two graphs we’ve already defined were

• The abundancy sieve graph AS(n, T ) whose vertices are abundancy
indices that would guarantee n has a friend, colored based on whether a
test in T determines that vertex to be an abundancy outlaw. We could
consider it a doubly weighted graph by assigning the edge (u, v) the value
|u− v|.

• The swapping graph S(n), where we begin with a vertex n and itera-
tively add vertices for each swap sw(v, i, j) = pi

pj
n for a vertex v. This

graph doesn’t really depend on n, but the vector of exponents (νp(n)) for
each p|n. The goal was to look at the change in abundancy along an edge.
Also, this should really be a directed graph.

The following graph will try to isolate gcd(n, σ(n)). The graph F(n) will
have ω(n) vertices corresponding to each p|n, with an edge from p to q if
p|σ(qνq(n)), with a weight of k if pk||σ(qνq(n)). So this is a directed edge-weighted
graph. By ordering the primes dividing n as p1 < p2 < · · · < pω(n), we could
also describe this via its adjacency matrix A(F(n)) whose (i, j)th entry is

νpi(σ(pνpj (n)
j ))
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Since σ(p) ≡ 1 mod p, this graph will be simple (have no loops). It will often
not be symmetric. Let’s see an example.

Let n = 6. Then 22|σ(3) and 3|σ(2), so

A(F(n)) =
[
0 2
1 0

]

The sum of a row i is the exponent of pi in σ(n), so writing σ(n) = σ(n)s(n)
where rad(σ(n))|rad(n) and gcd(s(n), n) = 1, we can recover σ(n) by matrix
multiplication:

[
log(p1) log(p2) . . . log(pω(n))

]
A(F(n))


1
1
...
1

 = log(σ(n))

In 2000, David Wagner wrote a paper The critical group of a directed
graph extending the work by Biggs in 1995 on the critical group/graph lapla-
cian/chip firing game of undirected graphs. The Laplacian of an undirected
graph is the difference between its degree matrix and its adjacency matrix,
L = D − A. The only difference we really need to make for a directed graph is
that we use the out-degree matrix.

However, defining the critical group K(G) of an undirected graph comes
from looking at the torsion part of the cokernel Z|V |/LtZ|V |, where Lt is the
transpose of L. The dual group K∗(G) is the cokernel of L itself. These are not
just isomorphic but literally equal, since Lt = L for an undirected graph. But
in general, K∗(G) is non-canonically isomorphic to K(G), depending on a choice
of transformation matrices to the smith normal form of L.

By the fundamental theorem of finitely generated abelian groups, the critical
group can be written as a product of cyclic groups of order g1, g2, . . . ,. We
picked these factors up by looking at the smith normal form. This is why
K∗(G) ∼= K(G), because L and Lt have the same smith normal form.

The values g1, g2, . . . , satisfy g1|g2|g3| . . . with
∏
gi equaling, for an undi-

rected graph, the number of spanning trees. The number of gi = 1 is the rank of
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the cokernel of L, and is equal to the number of strongly connected components
of G.

ASIDE: Earlier (page 17), when looking at `(n) =
∑α(n)
k=1 radk(n), we dis-

cussed how looking at how many n satisfy `(n) = L for some fixed L corresponds
to looking at square-free, divisible partitions of L. That is, the number of solu-
tions is the number of ways to write L = a1 +· · ·+at with ai 6= 1 square-free and
ai+1|ai. Then n =

∏
ai. Seeing the condition above reminded me of this and

maybe SNF could be helpful in counting or working with square-free, divisible
partitions?

Let’s go ahead and code up something to compute some of these critical
groups. Note that in Sage, we use “elementary divisors” instead of “invariant
factors”, but they mean the same thing.

n = 2*3*5
P = [p[0] for p in list(factor(n))]
A = matrix.zero(om(n))
for i in range(om(n)):

for j in range(om(n)):
A[i,j] = (sigma(P[j]^(n.valuation(P[j])))).valuation(P[i])

D = matrix.zero(om(n))
for i in range(om(n)):

D[i,i] = sum(A[i])
L = (D - A).transpose()
L.elementary_divisors()

Clearly, if n is a prime power, then F(n) consists of a single vertex. The
first two non-trivial graphs are n = 6 and n = 10, both of which have trivial
critical groups. The following two, n = 12 and n = 14 have non-trivial critical
groups, with

K(F(12)) = Z/2Z

K(F(14)) = Z/3Z

There matrices are
[
0 2
0 0

]
and

[
0 2
0 0

]
. Here are the graphs for n = 12, 14.
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For n = 30, we get matrix

0 2 1
1 0 1
0 0 0

 and graph

15 A Unitary Twist
So I came across an interesting variation on the sigma function, which is the
sum of unitary divisors σ∗(n). A divisor is called unitary if gcd(d, n/d) = 1,
and therefore

σ∗(n) =
∑
d|n

gcd(d,n/d)=1

d
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So we could define an analogue to the abundancy index and see what happens!
We’ll define the unitary abundancy index to be

A∗(n) = σ∗(n)
n

Naturally, we call n andm unitary-friends if their unitary abundancy indices
are equal. The property “n|m ⇒ A(n) < A(m)” does not hold for the unitary
index! For example

A(6) = 1 + 2 + 3 + 6
6 = 2 A(12) = 1 + 3 + 4 + 12

12 = 5
3

However, if d is a unitary divisor of n, then any unitary divisor e|d is a
unitary divisor of n as well, so we do get the following fact that If d is a
unitary divisor of n, then

A∗(d) < A∗(n)

This means the unitary abundancy index is multiplicative just like the usual
one, since pνp(n) is always a unitary divisor of n for all p|n. For n = pa, we have

A∗(pa) = 1 + pa

pa
= 1 + 1

pa

A really cool thing that this means is that for fixed a,

∏
p

A∗(pa) =
∏
p

(
1 + 1

pa

)
=
∏
p

(
1− 1

p2a

)
(

1− 1
pa

) =
∏
p

(
1− 1

pa

)−1

(
1− 1

p2a

)−1 = ζ(a)
ζ(2a)

So this converges for a > 1. While the equivalent product for A(pa) diverges
for all a: ∏

p

A(pa) =
∏
p

(
1 + 1

p
+ · · ·+ 1

pa

)
>
∏
p

(
1 + 1

p

)
And we can see that the final product diverges by using Merten’s estimate.

∏
p

(
1 + 1

p

)
=
∏
p

(
1− 1

p2

)
(

1− 1
p

) =
∏
p

(
1− 1

p

)−1

(
1− 1

p2

)−1 = 1
ζ(2)

∏
p

(
1− 1

p

)−1
∼ eγ0

ζ(2) logx

where Merten’s product formula gives the last asympototic.
So with even the basic test for solitary numbers gone, I wonder how hard it

is to find unitary-friendly numbers? We can code this up as follows:
def Astar(n):

D = divisors(n)
Dstar = []
for d in D:

if gcd(d,n/d) == 1:
Dstar.append(d)

return sum(Dstar)/n
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and plot it on top, with the plot of the regular abundancy index on the bottom.
We can see that it pretty much looks the same, but the unitary plot might have
a bit more white space in certain areas.

The list of the first few unitary-friendly pairs is

[(12, 18), (2, 20), (2, 24), (3, 45), (6, 60), (4, 72), (6, 90),
(10, 120), (84, 126), (14, 140), (14, 168), (12, 180), (132, 198)]

with a few indices worked out:

A∗(2) = 1 + 2
2 = 3

2 A∗(6) = 1 + 2 + 3 + 6
6 = 2

A∗(12) = 1 + 3 + 4 + 12
12 = 5

3 A∗(20) = 1 + 4 + 5 + 20
20 = 3

2
In general, using multiplicativity,

A∗(n) =
∏
p

pνp(n) + 1
pνp(n)

So any reduction of the fractions comes from a pair of primes p 6= q both dividing
n so that p|(qνq(n) +1). This is exactly why I believe the graph we defined above
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is better suited to the unitary abundancy index! It naturally only includes the
primes dividing n, while σ(n) could be divisible by other prime, and that isn’t
accounted for in F(n). But let’s continue with the unitary stuff for now.

Now we know that sometimes you have to search very hard to find friendly
numbers. But in a search up to 20000, here are the first 200 unitary-friendly
numbers. They have a density of 0.565.

[2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 27, 28,
32, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56,
57, 58, 60, 62, 63, 66, 68, 69, 70, 72, 74, 76, 78, 82, 84, 86, 87,
88, 90, 92, 93, 94, 96, 98, 100, 102, 104, 106, 108, 110, 111, 114,
116, 118, 120, 122, 123, 124, 126, 129, 130, 132, 134, 135, 136,
138, 140, 141, 142, 146, 147, 148, 152, 154, 156, 158, 159, 162, 164,
166, 168, 170, 172, 174, 177, 178, 180, 182, 183, 184, 186, 188, 190,
192, 194, 196, 198, 200]

In contrast, the first 200 friendly numbers up to the same bound are

[6, 12, 28, 30, 40, 42, 56, 60, 66, 78, 80, 84, 102,
114,120, 132, 135, 138, 140, 150, 168, 174, 186, 200]

and have density 0.12. I wonder how good a lower bound on the density of
unitary-friendly numbers we can get? We can pull the same trick Greening and
others did in the original 6020 article.

If gcd(k, 10) = 1, then

3
2A
∗(k) = A∗(20)A∗(k) = A∗(20k) = A∗(2k) = A∗(2)A∗(k) = 3

2A
∗(k)

Then the density of the set of unitary-friendly numbers is at least

φ(10)
10

(
1
2

)
= 1

5 = 0.20

If we use a different pair, say (12, 18), we need gcd(k, 6) = 1, then A∗(12k) =
A∗(18k), which gives a density bound of

2
6

(
1
12 + 1

18 −
1
36

)
= 1

27

Characterizing which primes divide σ∗(n) goes in a very similar way. For
example,

Proposition 2 σ∗(n) is odd if and only if n is a power of two.

Proof 3 For a general n, we have

σ∗(n) =
∏
p|n

(1 + pνp(n)),

so σ∗(n) is even if any odd prime divides n. Therefore, n must be a power of 2.
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So can we prove that any number is unitary-solitary? n = 5 is the first
number to not appear in the list. I ran it again searching up to 100000, which
made the density of the first 200 unitary-friendly numbers equal to 0.60. The
number 5 still doesn’t appear, and neither do

9, 11, 13, 16, 17, 19, 23, 25, 29, 30, 31, 37, 41, 43, 47, 49

So perhaps prime powers are unitary-solitary except for the first few. Let’s see.

A∗(pa) = pa + 1
pa

which means any friend m of pa must be divisible by pa. Write m = pbm′ with
b ≥ a and gcd(p,m′) = 1, so

A∗(m′) = (pa + 1)pb
pa(pb + 1) = pb−a(pa + 1)

pb + 1

Within the first 5000 integers, the prime powers we have found to be unitary-
friendly are

[2, 3, 22, 7, 23, 33, 25, 27]

which means that if any other prime powers have friends, they are larger than
100000. Which again isn’t unreasonable, given the classic example of 24’s small-
est friend being 91, 963, 648. Let’s look at 16 = 24. Then we need some odd m′
with

A∗(m′) = 2b−4(24 + 1)
2b + 1 = 2b−417

2b + 1
If b = 5, this becomes

A∗(m′) = 34
33

Now σ∗(33) > 34, so does the same kind of theorem work here?
Suppose a/b is in reduced form and b < a < σ∗(b). Without the star, this

is easily proved using the divisibility test for solitary numbers (for example,
Lemma 2.2.5 in Dris’ Solving the Odd Perfect Number Problem).

But now the divisibility test only works for unitary divisors. Let’s see how it
goes. Assume a/b is in reduced form (meaning gcd(a, b) = 1) and b < a < σ∗(b).
If we suppose we have some n with A∗(k) = a/b. Then

bσ∗(k) = ak,

so b|k and a|σ∗(k).
Actually, this just isn’t true! For example, σ∗(30) = 72 yet 41/30 is a

unitary-abundancy index for 3240. Similarly, σ∗(15) = 24 but A∗(30240) =
22/15. Another example is A∗(80) = 51/40, despite σ∗(40) = 54. Let’s go
ahead and list out the abundancy indices we find by computation up to 500000,
ordered by denominator.
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1
3
2

4
3 ,

5
3

5
4 ,

7
4

6
5 ,

7
5 ,

8
5 ,

9
5 ,

12
5

7
6

8
7 ,

9
7 ,

10
7 ,

11
7 ,

12
7 ,

13
7 ,

16
7

9
8 ,

11
8 ,

13
8

10
9 ,

11
9 ,

13
9 ,

14
9 ,

16
9

13
10 ,

17
10

Looking at something like this would push us towards looking at Farey se-
quences, and perhaps that can help in figuring out how many indices should
appear in each row. But just looking at some possible patterns, one interesting
thing happens when you look for a denominator of 12. There are 48 and 720
with A∗ = 17/12, but nothing bigger. Most other numbers had a few larger
ones as well.

We can look at the denominators of A∗(n) for n ≤ 50000, and we get the
following counts for d = 1, 2, . . . , 100.

[4, 9, 7, 6, 16, 4, 23, 7, 10, 3, 21, 2, 26, 1, 10, 2, 22,
1, 27, 4, 10, 4, 27, 2, 22, 6, 10, 5, 29, 1, 23, 7, 8, 3,
19, 4, 23, 7, 14, 1, 33, 3, 28, 5, 9, 3, 28, 4, 20, 4, 7,
5, 26, 3, 20, 1, 13, 7, 31, 1, 17, 1, 8, 2, 20, 1, 22, 8,
9, 3, 28, 3, 12, 3, 7, 3, 22, 2, 26, 4, 5, 5, 33, 0, 18,
5,10, 3, 31, 2, 13, 4, 11, 4, 15, 0, 24, 5, 10, 6]

with histogram
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Let’s isolate those values that never appear as a denominator for the first 50000
integers. There seem to be quite a lot but we’re also not looking very high.

[84, 96, 126, 132, 138, 156, 198, 204, 210, 245, 246, 258, 270, 300]

Fixing 84, we just needed to look a bit farther: A∗(122304) = 125
84 .

15.1 Unitary divisors for other functions
Another direction we could go is to see how other arithmetic functions react
when restricted to unitary divisors. First of all, here’s a fun application of
unitary divisors to group theory.

Theorem 25 If G of order n has a normal subgroup H whose order is a unitary
divisor d, then H is the unique such subgroup, and there exists a subgroup K of
order n/d so that G is a direct product: G = K ×H.

Proof 4 Since H is normal, the quotient group G/H is well defined, and since
d is a unitary divisor, the orders of H and G/H are relatively prime. If H ′ is
any other subgroup of order d, the quotient map φ : G → G/H will send H ′

to a subgroup of G/H, which means |φ(H ′)| divides |G/H|. But |φ(H ′)| also
divides |H ′|, which is relatively prime to |G/H|, so |φ(H ′)| = 1. This means
H ′ ⊆ ker(φ). But we know, since φ is the quotient map, that ker(φ) = H, and
since they are the same size, this shows H ′ = H, which shows uniqueness.

Let i : G/H → G be the inclusion map. Then K = Im(i) is a subgroup of G
whose order is a unitary divisor, so it is unique, and therefore normal. Because
their orders are relatively prime, K ∩ H = {e}, so |K × H| = |K||H| = |G|,
with the obvious inclusion map being an isomorphism between G and K ×H.

The divisor sum for Euler’s totient function

n =
∑
d|n

φ(d)

usually comes from looking at the cyclic group Cn of order n and noting that
each element generates some subgroup. Conversely, for each divisor d|n, the
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number of generators for the subgroup Cd ⊂ Cn is φ(d). These two points of
views give us the sum. Written out using sums:

n =
∑
g∈Cn

1 =
∑
d|n

∑
<g>=Cd

1 =
∑
d|n

φ(d)

What does restricting to unitary divisors do? Clearly counts the number of
generators of cyclic subgroups of unitary divisor order. But any other way to
look at it? Well the cyclic group Cn is abelian, so can be written as a direct
product. But Ca × Cb = Cab if and only if gcd(a, b) = 1, which means the
only decompositions of Cn into the direct product of two groups are Cd ×Cn/d
for a unitary divisor d. So restricting to unitary divisors counts the generators
of those subgroups that appear in direct product decompositions of length 2.
Maybe it would be fun to generalize in that direction, by allowing longer length
decompositions. Or we could extend to counting generators of subgroups that
appear in a semi-direct product decomposition of G.

Another classic divisor sum is the mobius function, for which

∑
d|n

µ(d) =
{

1 n = 1
0 else

Recall the function β(n) = minp|n{νp(n)} that we looked at in the first section
that returns the minimum exponent of n. Then we get a really cool theorem by
restricting to unitary divisors!

Theorem 26 ∑
d|n

unitary

µ(d) =
{

1 β(n) > 1
0 else

So where the mobius divisor sum is often used to isolate when something
(like a gcd)) is equal to 1, this unitary mobius sum could be used to isolate those
n whose exponents are all at least 2. In other words, not only is n not square-
free, but it has no square-free part at all. This is really interesting to me because
restricting to unitary divisors usually makes that divisor not square-free, while
µ(d) is zero if d is not square-free, so they seem at ends with eachother.

Proof 5 Let
U(n) =

∑
d|n

unitary

µ(d)

Since pνp(n) is a unitary divisor for n for all p|n, we can write

U(n) =
∏
p|n

U(pνp(n))
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because of the multiplicativity of µ(n). Then

U(pa) =
∑
d|pa

unitary

µ(d) = µ(1) + µ(pa)

and this is equal to 1 if a > 1 and 0 when a = 1. Therefore, U(n) is 0 if any
νp(n) = 1, and the statement follows.

And we get something really cool when looking at the Dirichlet generating
function for U(n). Clearly for the original mobius divisor sum, the Dirichlet
generating function is just 1/n.

Theorem 27
∞∑
n=1

U(n)
ns

= ζ(2s)ζ(3s)
ζ(6s)

For example, setting s = 1 gives Landau’s totient constant, one we’ve seen a
few times here:

ζ(2)ζ(3)
ζ(6) ≈ 1.943596

Using the notation defined in the first few sections,

radk(n) =
∏
p|n
pk|n

p

we can say the sum of reciprocals of those n with rad1(n) = rad2(n) converges
to the above constant.

Proof 6 We start by writing
∞∑
n=1

U(n)
ns

=
∞∑
n=1

β(n)>1

1
ns

and then rewrite it as its Euler Product.

=
∏
p|n

(
1 + 1

p2s + 1
p3s + . . .

)
=
∏
p|n

((
1− 1

ps

)−1
− 1
ps

)

=
∏
p|n

(
ps

ps − 1 −
1
ps

)
=
∏
p|n

p2s − ps + 1
ps(ps − 1)

We’ll now arrive at the same product by starting with the zeta function quotient.

ζ(2s)ζ(3s)
ζ(6s) =

∏
p|n

(
1− 1

p2s

)−1 (
1− 1

p3s

)−1

(
1− 1

p6s

)−1 =
∏
p|n

(
1− 1

p6s

)
(

1− 1
p2s

)(
1− 1

p3s

)
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=
∏
p|n

(
1− 1

p3s

)(
1 + 1

p3s

)
(

1− 1
p2s

)(
1− 1

p3s

) =
∏
p|n

(
1 + 1

p3s

)
(

1− 1
p2s

) =
∏
p|n

(
p3s+1
p3s

)
(
p2s−1
p2s

)
=
∏
p|n

p2s(p3s + 1)
p3s(p2s − 1) =

∏
p|n

(ps + 1)(p2s − ps + 1)
ps(ps − 1)(ps + 1) =

∏
p|n

p2s − ps + 1
ps(ps − 1)

and we’re done!

And of course, we could really restrict to any subset of divisors and see how
these go. For example, what if we looked at what we previously called maximal
divisors of n? Those d|n s.t. for at least one p, we have νp(d) = νp(n). These
sit between unitary divisors and all divisors:

{d|n unitary} ⊆ {d|n maximal} ⊆ {d|n}

with equality when n is square-free. We used this to decompose n/φ(n) into a
sum of abundancy indices and phi ratios. For the mobius sum, any maximal
divisor is of the form d = pνp(n)d′, so if νp(n) > 1, then µ(d) = 0.

Let sf(n) be the square-free part of n (explicitly sf(n) = rad(n)/rad2(n)).
A divisor d will only contribute to the sum if d|rad(n), so a maximal divisor
must have gcd(d, sf(n)) 6= 1. So d = gcd(d, sf(n))s′ where gcd(sf(n), s′) = 1
and s′|rad(n)/sf(n). Then

∑
d|n

maximal

µ(d) =
∑
s|sf(n)
s 6=1

∑
s′|rad(n)/sf(n)

µ(ss′) =
∑
s|sf(n)
s 6=1

∑
s′|rad(n)/sf(n)

µ(s)µ(s′)

=

 ∑
s|sf(n)
s 6=1

µ(s)


 ∑
s′|rad(n)/sf(n)

µ(s′)


If rad(n)/sf(n) 6= 1, then the second sum will be 0. So our divisor sum is 0 if

n is not square-free. When n is square-free, the first sum is just the usual sum of
divisors of n, minus µ(1) = 1. We can phrase this using α(n) = maxp|n{νp(n)}
to mirror the unitary divisor sum:

∑
d|n

maximal

µ(d) =


1 α(n) = 0
−1 α(n) = 1
0 else

We could also define a maximal abundancy index and look at the same things
we did before. We could also consider the subsets of divisors in a fixed residue
class (e.g. {d|n : d ≡ 1 mod 5}), which I definitely want to get to!

But for now, I want to go back to the unitary divisors. I’d really like to
understand which indices a/b are unitary-outlaws. A few indices that didn’t
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appear in our search are 11/5, 11/6, 15/7, but our search wasn’t terribly far, so
this doesn’t mean too much.

If gcd(a, b) = 1, then a/b being a unitary-abundancy index means there is
some n ∈ Z+ so that

σ∗(n)
n

= a

b
.

Then n = bk and σ∗(n) = ak for some k ∈ Z+. Putting these together, we need
some k so that σ∗(bk) = ak.

If gcd(b, k) = 1, then σ∗(bk) = σ∗(b)σ∗(k), so

a

b
= σ∗(n)

n
= σ∗(b)σ∗(k)

bk
= A∗(b)A∗(k)

which means we need a k with

A∗(k) = a

σ∗(b)

So if σ∗(b) > a, this is impossible.
Note that is only if gcd(b, k) = 1. For example,

A∗(100) = 1 + 4 + 25 + 100
100 = 130

100 = 13
10

where b = 10 and k = 10, despite σ∗(10) = 18. Let’s look at that specific case
where n is square-free and we want to determine A∗(n2). Any divisor of n,
squared, will be a unitary divisor of n2. And any unitary divisor of n2 must
equal the squares of some subset of primes diving n. So

σ∗(n2) =
∑
d|n2

unitary

d =
∑
d|n

d2

Cool! Recall that σk(n) is the sum of kth powers of divisors of n. Then for
square-free n, we have

σ∗(nk) = σk(n)

and
A∗(nk) = σk(n)

nk

Suppose we want to find a unitary-friend of 100. This friend must look like
m = 2a5bm′ where gcd(10,m′) = 1 and a, b ≥ 1. Then

A∗(m′) = 13/10
A∗(2a)A∗(5b) = (13)(2a−1)(5b−1)

(2a + 1)(5b + 1)

Let’s go through a few cases.

a = 1, b = 1 a = 1, b = 2
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A∗(m′) = 13
18 < 1 A∗(m′) = 65

78 < 1

a = 2, b = 1 a = 2, b = 2

A∗(m′) = 26
30 < 1 A∗(m′) = 130

130 = 1

a = 1, b = 3 a = 3, b = 1

A∗(m′) = 26
30 < 1 A∗(m′) = 26

27 < 1

a = 2, b = 3 a = 3, b = 2

A∗(m′) = 65
63 < 1 A∗(m′) = 10

9
These last two give plausible indices. Lets start with the right one. If A∗(m′) =
10/9, then m′ = 3cm′′ for some m′′ with gcd(30,m′′) = 1. This gives us

A∗(m′′) = 10/9
A∗(3c) = 3c−210

3c + 1

For c = 1, this is < 1, and for c = 2, we get that A∗(m′′) = 1, so we have a
friend! With (a, b, c) = (3, 2, 2), which gives m = 233252 = 1800.

Just by computation, we have a few other friends: 100, 1800, 61200, 79200.
None of these match the left case (a, b) = (2, 3). So let’s explore that. A∗(m′) =
65/63 means m′ = 3c7dm′′ for some c ≥ 2 and d ≥ 1 and gcd(210,m′′) = 1.
And this means

A∗(m′′) = 65/63
A∗(3c)A∗(7d) = (65)(3c−2)(7d−1)

(3c + 1)(7d + 1)

I just realized something. This will never be < 1 since lima→∞A∗(pa) =
lima→∞

1+pa
pa approaches 1 from above. So for the above example, when c and

d are big enough (which c ≥ 2, d ≥ 1 is in this case), this index will always be
bigger than 1. So if there is any disqualification, it must come from somewhere
else.

Let’s go to the next obvious option, divisibility. As we go along this process,
we build up a number that must be relatively prime to a larger number, e.g. at
first we needed gcd(10,m′) = 1 and then the next step gave us gcd(210,m′′) = 1,
and this will continue. If we contradict this at any point, this would prove the
non-existence of such a friend.

The denominator is (3c + 1)(7d + 1), so let’s see whether 2 or 5 divide these.
If they do, but don’t divide the top, then this will give us our contradiction! As
both are odd, both are always divisible by 2, so the denominator is divisible by
4. But the numerator is odd! Therefore, this would force 4|m′′, a contradiction!
So we can’t have a friend with (a, b) = (2, 3).

Going back to the (3, 2) case, we’d need

gcd(30,m′′) = 1 and A∗(m′′) = 3c−210
3c + 1
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Since 3 ≡ −1 mod 4, the denominator will be divisible by 4 whenever c is odd.
Since the numerator is only divisible by 2, this contradicts gcd(m′′, 2) = 1. So
c must be even.

Let c = 2c′ with c′ odd, then our equation becomes

A∗(m′′) = 32c′−210
32c′ + 1 = 9c′−110

9c′ + 1 .

Since 95 ≡ −1 mod 25, we have a contradiction whenever c′ is an odd multiple
of 5, which means gcd(c′, 5) = 1. So we can say that if 3|m, then it’s exponent
must be even but not divisible by 5. So let’s test c = 4. Then

A∗(m′′) = 3210
34 + 1 = 90

82 = 45
41

So m′′ = 41dm′′′ where gcd(2 ∗ 3 ∗ 5 ∗ 41,m′′′) = 1. Then

A∗(m′′′) = 45/41
A∗(41d) = 41d−145

41d + 1

For any d, the denominator is even, and the numerator is not, which contradicts
gcd(2,m′′′) = 1. Awesome! Since no suchm′′′ can exist, we have nom′′ for c = 4.

In general, if c ≡ 4 mod 8, then the denominator will be divisible by 41,
as 34 ≡ −1 mod 41. The numerator will be −10 6≡ 0 mod 41, so we get that
m′′ = 41dm′′′ with gcd(2 ∗ 3 ∗ 5 ∗ 41,m′′) = 1, so

A∗(m′′′) = 3c−210(41d)
(3c + 1)(41d + 1)

Both terms on the denominator (even after dividing 3c + 1 by 41) are even, so
the denominator is divisible by 4. The numerator is only divisible by 2, so this
implies 2|m′′′, a contradiction!

So the only possibilities are c ≡ 0, 2, 6 mod 8. One important thing we should
note and return to is the fact that we’re looking modulo 8 because Ord41(3) = 8,
and we had the idea that 41 would cause a contradiction after one more step.

So we have that c ≡ 0, 2, 6 mod 8 and c ≡ 1, 2, 3, 4 mod 5.

16 Fresh Start
I did some work on paper and just wanted to start this with a fresh start! We
worked out a semi-solitary proposition...

Proposition 3 If a/b is in reduced form and a is odd, then any n with A∗(n) =
a/b must be even.

Proof 7 If n is odd, then σ∗(n) is even, so A∗(n) = EV EN/ODD in reduced
form. Since a is odd, n cannot be odd.
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This also shows that if both a, b are odd, then any n with A∗(n) = a/b must
have ν2(σ∗(n)) = ν2(n) ≥ 1. We pick up at least one prime factor for each odd
prime dividing n, which gives the bound

ν2(n) ≥ ω(n)− 1.

For example, we have

A∗(26 ∗ 33 ∗ 5 ∗ 7) = 13
9 A∗(24 ∗ 32 ∗ 11 ∗ 17) = 15

11
If we wanted to find such an n with ν2(n) = ω(n)− 1, we’d need primes p|n so
that pνp(n) 6= −1 mod 4. Which means we have two possibilities:

• p ≡ 1 mod 4 or

• p ≡ −1 mod 4 and νp(n) is even.

How about n = 23 ∗ 5 ∗ 13 ∗ 17? Then A∗(n) = 1701
1105 , which is what we wanted,

ODD/ODD. Another is

A∗(23 ∗ 32 ∗ 5 ∗ 13) = 21
13 .

17 Connections between graph theory and num-
ber theory

There are dozens of really good papers, books, and talks on connections between
graph theory and number theory. I will focus here on a few of the connections
that always really fascinated me.

The first is the study of Ramsey Graphs. Recall the 2-color case of Ram-
sey’s Theorem: There exists a minimal integer R(a, b) so that any edge-coloring
of a graph on n ≥ R(a, b) vertices contains either a clique of size a or an in-
dependent set of size b. This means finding any graph with no a-clique or
b-independent set gives a lower bound on R(a, b). Such a graph is called a
Ramsey Graph for R(a, b).

For example, the 5-cycle contains no triangle (3-clique) and
the largest independent set has size 2. Since it contains 5 vertices, this shows

R(3, 3) > 5

Along with upper bounds, this could allow us to determine a Ramsey number.
For example, Erdos showed

R(a, b) ≤
(
a+ b− 2
a− 1

)
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For a = b = 3, this shows R(3, 3) ≤ 6. Therefore, 5 < R(3, 3) ≤ 6, so R(3, 3) =
6.

Brendan McKay has done a lot of work and computation on Ramsey Graphs,
and has a page dedicated to important facts about them. My first exposure to
these was through an off-hand comment in some book I can’t quite remem-
ber (maybe J.H. van Lint’s A Course in Combinatorics?), where they stated
R(3, 5) = 14 and R(4, 4) = 18.

I remembered the book I first saw the Paley graphs out of, in the second
part of this document. Murty and Bondy’s Graph Theory.

Where this comes from is a paper by Greenwood and Gleason from 1955.
Note that 14− 1 = 13 and 18− 1 = 17, which hints at the method they use to
construct these Ramsey graphs: look at the finite fields F13 and F17.

But let’s actually start with R(3, 4) = 9. By the recurrence

R(a, b) ≤ R(a, b− 1) +R(a− 1, b)− 1,

we get that R(3, 4) ≤ R(3, 3) + R(2, 4) − 1 = 6 + 4 − 1 = 9. For the lower
bound, we construct a graph on 8 vertices by identifying those vertices with the
elements of F8 and connecting two if their difference is ±1 or 4 mod 8.

0

1
2

3

4

5
6

7

This has no triangles because if x−y = ±1, 4 and y−z = ±1, 4, then x−z =
0, 2, 3, 5, 6, so there can’t be an edge between them. It has no independent subset
of size 4. This is easily seen since the largest independent set of the cycle C8 is
4, and either such set is no longer independent when adding all the diagonals.

With R(3, 5) > 13, we take a graph G whose vertices are elements of F13,
and connect x and y if x − y is a cubic residue mod 13. Specifically, these
are 1, 5, 8, 12. The fact that −1 is a cubic residue means that this graph is a
well-defined undirected graph.
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To show this is truly a Ramsey graph, we need to show it has no triangles
and no independent set of size 5. For the first fact, note that we can explicitly
describe the neighborhood of a vertex x as

N(x) = {x+ 1, x+ 5, x− 5, x− 1}

all taken mod 13. If we have a triangle x, y, z, then y = x+r1 and z = x+r2 for
two different cubic residues, which means their difference is r1−r2 = {3, 4, 7, 11},
none of which is a cubic residue, so (y, z) can’t be an edge.

If we try to form an independent set of size 5, we can start with 0 by sym-
metry. Then the remaining four vertices must come from {2, 3, 4, 6, 7, 9, 10, 11}.
Looking at the connectivity of these makes the issue clear.

2
34

6

7

9 10
11

We need to choose 4 more numbers, and there are three groups, so by the
pigeonhole principle, we must choose two numbers in the same group. It can’t
be (6, 7), so WLOG, assume it is 2 and 4. But then the only remaining vertices
are (6, 11), which is an edge. So no independent set of size 5 can exist.

But that was combinatorial and I promised algebraic! The multiplicative
group F×13 is isomorphic to Z/12Z and has a generator g, which we can just
choose to be 2. Let R = {1, 5, 8, 12} be the subgroup of cubic residues. The
cosets gR = {2, 3, 10, 11}, g2R = {4, 6, 7, 9} partition the set of non-residues into
two sets of size 4.

By symmetry, we can suppose our independent set looks like {0, v1, v2, v3, v4},
where vi are all non-residues. We see that gR contains four edges in a square

117



and g2R contains two disjoint edges, so we can’t have all the vi in one coset. In
fact, it also shows that if we have three vi in one coset, we’re forced to have an
edge. So WLOG, let’s say v1, v2 ∈ gR and v3, v4 ∈ g2R.

In gR, it has to be either (2, 11) or (3, 10). If (v1, v2) = (2, 11), then we have
edges (2, 7) and (11, 6) between cosets, which would force (v3, v4) = (4, 9), which
is an edge, contradicting independence. If (v1, v2) = (3, 10), then we get edges
(3, 4) and (10, 9) between cosets, which would force (v3, v4) = (6, 7), which is an
edge, giving a contradiction. So there can be no independent set of size 5.

Still doesn’t feel totally algebraic, more a reformulation of the combinatorial
argument, but I did feel more comfortable arguing with the cosets!...but we’ll
dive deeper into this Finite Field Method for Ramsey Graphs and get a better
feel.

Let’s see if we can do R(4, 4) in the same way. We define our graph G to be
on 17 vertices, connecting x and y iff x− y is a quadratic residue mod 17. Note
that −1 = 42 mod 17 is a quadratic residue, so the graph is again well-defined.

Before actually working on that, let’s write some code to create these graphs,
since that will be helpful if we want to look at invariants of these graphs later.
We’ll call it FFM(p, r), where we connect x and y iff x − y is an rth residue
mod p. This is pretty easy, code-wise. We generate Rset of rth powers mod p,
and then we check that −1 is in this set, and return an error if not. Then we
run through all pairs (a, b) and check whether their difference is in Rset. Then
G = Graph(E) generates the graph!

def FFM(p,r): #(x,y) in E iff x - y = r^th power mod p
Rset = list(Set([mod(x^r,p) for x in range(1,p)]))
if p-1 not in Rset:

return(’Graph not well-defined’)
else:

E = []
for a in range(p-1):

for b in range(a+1,p):
if mod(b - a,p) in Rset:

E.append((a,b))
G = Graph(E)
return(G)

When we plot it, we want to make sure we add layout = ‘circular′ (but don’t
copy and paste this because it won’t work right). For p = 13 and r = 3 (what
we just worked through), this looks like
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Much nicer than my tikz drawing! And to be explicit, the two functions we
want to check are

G.clique_number()
G.complement().clique_number()

If C is the first number and I is the second, then this means our graph gives a
lower bound

R(C + 1, I + 1) > p.

For example, with FFM(13, 3), we get C = 2 and I = 4, which shows R(3, 5) >
13. To show that R(4, 4) > 17, we’ll use the graph FFM(17, 2), and prove
C = I = 3.

Of course, I’m sure a search over all such graphs to very many vertices has
already been done. I did a small search myself years ago and rediscovered a few
bounds, which is fun!

Let’s fix r = 2 and go through a few primes and see what graphs we get. I
will color others’ bounds in blue to differentiate between what these give and
the best current bounds.
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Figure 1: FFM(5, 2), C = I = 2 Figure 2: FFM(13, 2), C = I = 3

So we see that the cycle graph bounding R(3, 3) > 5 comes about in this
way, looking at quadratic residues mod 5. The right graph gives the bound
R(4, 4) > 13, which is not as good as FFM(17, 2). For completeness, we’ll
include FFM(17, 2) again but also FFM(29, 2). I should mention that char-
acterizing quadratic residues mod p tells us that −1 is a residue mod p iff
p ≡ 1 mod 4.

Figure 3: FFM(17, 2), C = I = 3 Figure 4: FFM(29, 2), C = I = 4

The bound given by the left graph is tight, but the right graph gives a bound
of R(5, 5) > 29, while we know that 43 ≤ R(5, 5) ≤ 48. Continuing on, I love
the way these graphs look.
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Figure 5: FFM(37, 2), C = I = 4 Figure 6: FFM(41, 2), C = I = 5

This gives the better bound R(5, 5) > 37, and the right graph gives R(6, 6) >
41 (with the best current bounds 102 ≤ R(6, 6) ≤ 165). Though things start to
get crowded, we get a better bound of R(6, 6) > 89 with FFM(89, 2):

I’m going to stop plotting them, but here are some results just from these
quadratic residue graphs with primes p < 200:

R(5, 5) > 37

R(6, 6) > 101

R(7, 7) > 109

R(8, 8) > 193

R(9, 9) > 197

That’s awesome! If you notice, R(6, 6) > 101 is the best lower bound currently
known, and we get it from FFM(101, 2).

Let’s pivot to looking at cubic residues. And more plots!
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Figure 7:
FFM(7, 3), C = 2, I = 3

Figure 8:
FFM(13, 3), C = 2, I = 4

The left gives R(3, 4) > 7, which isn’t as good as our eight-vertex graph,
but not bad! The right is, of course, the graph we worked through to show
R(3, 5) > 13, which is a tight bound.

Figure 9:
FFM(19, 3), C = 3, I = 4

Figure 10:
FFM(31, 3), C = 3, I = 6

Figure 11:
FFM(37, 3), C = 3, I = 7

Figure 12:
FFM(43, 3), C = 3, I = 7

Some further bounds gotten from cubic residue graphs for primes p < 200
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are:
R(4, 5) > 19 R(4, 7) > 31
R(4, 8) > 43 R(4, 9) > 67

R(4, 10) > 79 R(4, 12) > 127
R(5, 9) > 73 R(5, 11) > 139 R(5, 14) > 199
R(6, 9) > 97 R(6, 10) > 109 R(6, 12) > 181

R(7, 11) > 163
None of these are optimal.

Quartic residue graphs go as follows:

Figure 13:
FFM(17, 4), C = 2, I = 6

Figure 14:
FFM(41, 3), C = 2, I = 10

Figure 15:
FFM(73, 3), C = 3, I = 11

Figure 16:
FFM(89, 3), C = 3, I = 13

This gives the bounds R(3, 7) > 17 (and it is known that R(3, 7) = 23) and
R(3, 11) > 41 (with the best lower bound currently R(3, 11) > 45). Some other
bounds we get are

R(6, 11) > 137, R(5, 15) > 193

Neither of these are optimal. Setting this up in a nice way, let’s generate a
bunch of bounds and collect the best:
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r=5
for p in list(primes(200)):

if -1 in [mod(x^r,p) for x in range(1,p)]:
G = FFM(p,r)
print(’R(’+str(G.clique_number() + 1)+’,’+str(G.complement().clique_number() + 1)+’)>’+str(p))

The output of this looks like this:

R(3,2)>2
R(3,3)>5
R(4,4)>13
R(4,4)>17
R(5,5)>29
R(5,5)>37
R(6,6)>41
R(6,6)>53
R(6,6)>61
R(6,6)>73
R(6,6)>89
R(7,7)>97
R(6,6)>101
R(7,7)>109
R(8,8)>113
R(8,8)>137
R(8,8)>149
R(8,8)>157
R(9,9)>173
R(8,8)>181
R(8,8)>193
R(9,9)>197
R(10,10)>229
R(8,8)>233
R(8,8)>241
R(8,8)>257
R(9,9)>269
R(9,9)>277
R(8,8)>281
R(9,9)>293
R(9,9)>313
R(10,10)>317
R(10,10)>337
R(10,10)>349
R(10,10)>353
R(9,9)>373

And we could look for smaller input numbers lower on the list for the best
bounds we can get. For example, FFM(281, 2) gives the current best lower
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bound of R(8, 8) > 281. We also get from this further search:

R(9, 9) > 373, R(10, 10) > 569

R(11, 11) > 577, R(12, 12) > 641

It’s very exciting watching better and better bounds come in!
Switching to r = 3, cubic residues, we get the bounds

R(5, 15) > 241

R(6, 12) > 229

R(6, 15) > 271

I’ve always thought it would be nice to be able to expand this to all integers.
And we can! As long as −1 is an rth residue, then we can form the graph in the
exact same way. Do any better bounds arise from these? Not that I can tell.
But I cleaned up the code a bit and went a bit further with the prime graphs
for r = 2.

def FFM(p,r): #(x,y) in E iff x - y = r^th power mod p
Rset = list(Set([mod(x^r,p) for x in range(1,p)]))
E = [(a,mod(a+r,p)) for a in range(p) for r in Rset]
G = Graph(E)
return(G)

These are still nowhere near the current best bounds.

R(11, 11) > 709, R(12, 12) > 829, R(13, 13) > 821 R(14, 14) > 853

I take it back! The best known lower bound R(10, 10) < 797 can be obtained
by FM(797, 2), which is awesome!

18 Difference Graphs
The previous section made me realize that the set of residues isn’t particularly
special (although the multiplicative structure was nice). All we really need is a
set D ⊆ {0, . . . , n − 1} so that D = −D (centrally symmetric, as sets) and we
can define a graph G(D) with vertex set {0, . . . , n− 1} and an edge between x
and y iff x− y ∈ D. The fact that D = −D means this is well-defined. Let’s do
a few examples.

• If D = {0, . . . , n− 1}, then G(D) = Kn.

• If D = ∅, then G(D) is the trivial graph on n vertices.

• In general, G(Dc) = G(D)c.
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• If D = {evens}, then (x, y) is an edge iff x and y are the same parity. So
we get two disjoint cliques, and G(D) = Kbn/2c tKdn/2e.

• Which means that if D = {odds}, G(D) is a bipartite graph with parts as
equal as possible. In other words, G(D) is the Turan graph T (n, 2).

• In general, take D = {x | x ≡ 0 mod k}. Then (x, y) is an edge iff
x ≡ y mod k, so G(D) = T (n, k), the k-multipartite Turan graph on n
vertices.

• If D = {±1}, then G(D) = Cn is the cycle graph on n vertices.

Letting C(D) and I(D) be the clique number and independence number of
G(D), we want to minimize C(D) + I(D) over all centrally symmetric subsets
D for which G(D) is connected, which should give the smallest Ramsey number
R(C(D) + 1, I(D) + 1) that is bounded below by n.

I’ll try to work through some probabilistic arguments with the expected
value of C(D) and I(D) when choosing a random centrally symmetric subset
D. It seems that they’re usually not giving great bounds, but I’ll work on it
more tomorrow!

For now, I want look at the case when D = {±p | p ≤ n prime}. Here are a
few plots with their corresponding Ramsey bound:

Figure 17: R(3, 3) > 5 Figure 18: R(5, 5) > 16

It seems like these graphs often have very large independent sets, so tend
to not make good bounds. Let’s go back to the previous stuff. Let’s start with
counting centrally symmetric subsets mod n and determining the connectivity
of G(D).

Every centrally symmetric subset has the form

{m1, . . . ,mt,−m1, . . . ,−mt | mi ≤
n

2 }.

This means every centrally symmetric subset D of {0, . . . , n−1} can be written
asD′∪−D′ for a subsetD′ ⊆ {0, . . . , bn2 c}, which tells us the number of centrally
symmetric subsets is just 2bn/2c.
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For example, with n = 6, we get four distinct graphs. The empty set, and
these three:

Figure 19: D = [1,−1] Figure 20: D = [2,−2] Figure 21:
D = [1, 2,−1,−2]

The best bounds we get here are R(3, 4) > 6. It also visually shows a fact
we didn’t pick up before,

G(D1 ∪D2) = G(D1) ∪G(D2),

where we consider the union of two graphs on the same vertex set to have edge
set a union of the edges of G(D1) and G(D2). And it shows one fact about
connectivity:

Proposition 4 Let D = {±k}, then G(D) is connected iff gcd(k, n) = 1.

Proof 8 This isn’t too hard - we form G(D) by starting at a vertex and adding
k to it until we get back to itself. The length of such an orbit is the size of the
subgroup generated by k inside Z/nZ, which is n/gcd(n, k). Therefore, G(D) is
the disjoint union of gcd(n, k) cycles of length n/gcd(n, k). In symbols,

G(D) =
gcd(n,k)⊔
i=1

Cn/gcd(n,k)

and the proposition follows.

All centrally symmetric can be written as D = ti{±mi} where each mi ≤
n/2. And therefore G(D) is the union of each of these individual graphs. Which
further means that G(D) is the union of∑

i

gcd(n,mi)

cycles. We should also mention here the well-studied area of gcd-sums. We’ll
look at this in a moment to see if we can count the number of cycles G(D) is
composed of.
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But this doesn’t really make the study of G(D) any easier - the gluing of
each of these subgraphs could be done in non-straightforward way and produce
a complicated G(D).

Let’s do another example with n = 7.

Figure 22: D = [1,−1] Figure 23: D = [2,−2] Figure 24:
D = [1, 2,−1,−2]

And the best bound we get is R(3, 4) > 7. Let’s do n = 8 next. Ignoring the
empty and trivial cycle graph, we get

Figure 25: D = [2,−2] Figure 26: D = [3,−3] Figure 27:
D = [1, 2,−1,−2]

Figure 28:
D = [1, 3,−1,−3]

Figure 29:
D = [2, 3,−2,−3]

Figure 30:
D = [1, 2, 3,−1,−2,−3]

with graphs 3 and 5 giving the best lower bound R(3, 4) > 8, and graphs 4
and 6 giving the bound R(3, 5) > 8. Continuing on with n, I’ll list any tight
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lower bounds or best-known lower bounds that appear. The first we encounter
is R(3, 5) > 13, which we get with two subsets:

Figure 31: D = [1, 5,−1,−5] Figure 32: D = [2, 3,−2,−3]

This is a wonderful method! We get four sets D that give a Ramsey graph
showing R(4, 5) > 24, which is the best lower bound since R(4, 5) = 25. These
sets are

[1, 2, 4, 8, 9,−1,−2,−4,−8,−9], [2, 3, 4, 8, 11,−2,−3,−4,−8,−11]

[3, 4, 5, 8, 10,−3,−4,−5,−8,−10], [4, 7, 8, 9, 10,−4,−7,−8,−9,−10]

And all of these produce an isomorphic graph, two of which look like:

The next best lower bound is R(4, 6) > 35. Let’s give it a go! In a surprising
(but probably should not be...) twist, the search completed with no graphs
found! Which means a difference graph is not the type of graph giving the
bound R(4, 6) > 35. A search for difference graphs with C < 6 and I < 6 on 36
vertices revealed a lot of C = I = 5 graphs, which give the bound R(6, 6) > 36,
which is nowhere near the current best. But we also find a few with C = 4
and I = 5, which give R(5, 6) > 36, while the current best lower bound is
R(5, 6) > 57. Here are a couple of these graphs.
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Figure 33:
[±2,±3,±7,±9,±10,±12,±17]

Figure 34:
[±1,±2,±4,±5,±7,±12,±14]

We’ll go ahead and do an exhaustive search over difference graphs on 36
vertices to see if any R(4, 6) Ramsey Graphs appear. In fact, looking through
difference graphs on 40 vertices will either produce a Ramsey graph for R(4, 6)
that is new, or it will return no graph, which means that any maximal Ramsey
graph for this number cannot be a difference graph.

Let’s try to make this search a little more reasonable. The set giving
R(3, 4) > 8 had 4 = (0.50)(8) elements, the set giving R(3, 5) > 13 had size
4 = (0.308)(13). The set giving R(4, 5) > 24 had size 10 = (0.417)(24). It
would make sense that if D was too small, then we’d have too large indepen-
dent sets. So let’s restrict to |D| ≥ n/4.

To try to find a lower bound on R(4, 6), we search over difference graphs
on 40 vertices with 10 ≤ |D| ≤ 20 and check if (C, I) = (3, 5) or (5, 3). In the
meantime, let’s try to give a proof that this is sufficient. To be more specific,

Proposition 5 Given k ≤ n, there exists α ∈ (0, 1) so that if |D| < αn2 , then
C(D) ≥ k or I(D) ≥ k.

First, note that G(D) is always |D|-regular, so the handshaking lemma tells
us |E| = n|D|

2 . Turan’s theorem tells us that if |E(G)| >
(
1− 1

k

)
n2

2 , then G
contains a copy of Kk. Then for small |D|, the graph G(D)c has enough edges
to guarantee a clique of size k, which shows I(D) ≥ k. Specifically, if

n(n− 1)
2 − |D|n2 >

(
1− 1

k

)
n2

2 ,

then I(D) ≥ k. This works out to

If |D| < n− k
k

, then I(D) ≥ k

So we can be sure that if |D| < 40−6
6 = 5.67, then G(D) is not a Ramsey graph

for R(4, 6). Which means our search is missing the cases 6 ≤ |D| ≤ 11, which
we’ll perform separately if the original search ever actually finishes.
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And...three and a half hours later, it timed out! Let’s try to split it up
into smaller chucks and sort by |D|, putting a Y when we’ve checked and an
N otherwise. This time, I’m being smarter and printing an update when we’re
1/4, 1/2, 3/4, and done, which is very helpful for morale, waiting for a while
but eventually seeing a 1/4 pop up.

|D| 6 8 10 12 14 16 18 20
Y/N Y Y Y Y N N N N

The first three were fairly quick. The subsets of size 12 took an hour and 45
minutes. The subsets of size 14 took almost 7 hours. That makes me worried
for the last three!

Before letting that take over my computer, I wanted to try the obvious brute
force method of trying to form a Ramsey graph for R(a, b). Sagemath has the
IndependentSets module that allows us to randomly choose from a graph G a
random maximal clique C and a random maximal independent set I. So our
strategy will go as follows:

1. Initialize a graphR(n, a, b) on n vertices - either empty or choose a random
graph.

2. Generate C and I.

3. If |C| ≥ a, then we randomly choose an edge e ∈ C and remove it.

4. If |I| ≥ b, then randomly add an edge to I.

5. Go to (2).

My intuition is that iterating this should naturally push us towards graphs that
are Ramsey graphs for R(a, b). In fact, if we reach a point where R(n, a, b)
has no a-clique and no b-independent set, then our program stops and we can
conclude R(a, b) > n. Conversely, if the program runs “long enough”, then we
could say with high likelihood that R(a, b) ≤ n.

To formalize this, for a graph G on n vertices, let

f(G) = (G− {e1}) ∪ {e2}

for randomly chosen e1 ∈ C and e2 ∈ I, if |C| ≥ a or |I| ≥ b. Then our question
is whether iterating f eventually leads to a fixed point, if such a fixed point
exists. I wonder if any of the classic fixed point theorems could apply here to
help count the number of Ramsey graphs on n vertices.

One direction this might take us is to consider the symmetric difference on
the set of graphs on n vertices. This forms a group and if we take intersection as
multiplication, gives us a ring. Further, the symmetric difference is nice enough
that we can even consider this set as a metric space.

In this metric space, any Cauchy sequence is eventually constant, and there-
fore its limit is that graph. This shows the space is complete, which means we
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could possibly apply, for example, the Banach fixed-point theorem. This proves
what our intuition would imply: Any mapping that is a contraction will fix a
unique point.

A contraction is something that shrinks distances between any pair of points.
The distance between two graphs is given by the size of their symmetric differ-
ence, meaning d(G1, G2) = |E1| + |E2| − |E1 ∩ E2|. In other words, it is the
number of edges belonging to either graph, but not both.

Consider d(f(G1), f(G2)). Then

f(G1) = (G1 − {e11}) ∪ {e12}

f(G2) = (G2 − {e21}) ∪ {e22}
If both graphs have at least an a-clique and a b-independent set, then both
graphs gain an edge and lose an edge, so |E1| and |E2| don’t change. But if the
edge we add is the same for both graphs and the edge we remove is different,
|E1 ∩ E2| will decrease by 1, so the distance increases. So it’s not quite a
contraction, but still an interesting point of view!

An easier way to see this is that the empty graph has distance n to the
complete graph Kn. Applying f to the empty graph adds an edge and applying
f to Kn removes an edge. If these are the same edge, then the distance remains
the same.

19 Random Ramsey Graphs
First, I found a blog post that makes all this “difference graph” stuff much
clearer! These graphs are actually commonly referred to as circulant graphs,
and ComputationCombinatorics goes through some wonderful results on the
clique number and independence number of these graphs. One nice result that
I want to record is on the connectivity of G(D). It’s a result that is familiar to
another topic I’ll touch on later. And it’s not particularly hard to prove.

Theorem 28 Let D = {d1, . . . , dt}. Then G(D) is connected if and only if
gcd(n, d1, . . . , dt) = 1

Let’s focus now on coding up the program we talked about in the last section.
We’ll initialize with the empty graph for now, but maybe later we’ll see if there
is much of a difference starting with a random (Erdos-Renyi) graph. Here’s an
example of RR(10, 3, 3), iterated 15 times.
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Letting it run further, we can look at a portion where we’ve gained more edges.

So for completeness, here’s the code I used. First we define RR(n, a, b):

def RR(n,a,b):
G = graphs.EmptyGraph()
G.add_vertices(list(range(n)))
Glist = [plot(G,layout=’circular’)]
for i in range(40):

G = ICcheck(G,a,b)
if G == ’done’:

Glist.append(G)
break

else:
Glist.append(plot(G,layout=’circular’))

return(Glist)

This initializes an empty graph, adds n vertices, begins a list with the plots of
each graph, and then iterates however many times we want through performing
ICcheck(G, a, b) and then adding that graph to the list. ICcheck is a function
we’ll define to check a graph for independent sets of size ≥ b and cliques of size
≥ a. If it doesn’t find any, it returns the string ’done’, which we check for.

def ICcheck(G,a,b):
I = G.independent_set()
C = G.clique_maximum()
c = 0
if len(I) > b-1:

e1 = sample(I,2)
G.add_edge(e1)
c+=1

if len(C) > a-1:
e2 = sample(C,2)
G.delete_edge(e2)
c+=1

if c > 0:
return(G)

else:
return(’done’)
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One helpful command is sample(S, k) which will choose k elements from S
at random. Then to plot it, we want to use graphicsarray, possibly having to
change the figure size when we show or save.

GL = RR(10,3,3)
A = graphics_array([GL[24:32],[GL[33:]])
save(A,’RR1033_3.png’,figsize=12)

We could also redefine RR(n, a, b) with a while loop ending when ICcheck re-
turns ’done’, but we’ll do it like this so that it doesn’t run endlessly. Plotting the
independence number (blue) and clique number (red), we see a nice bouncing
around 3, which it will keep doing since R(3, 3) = 6 < 10.

In fact, the independence number won’t dip below 4 because R(3, 4) = 9 <
10. Let’s test some n that we know bound ramsey numbers. For example, since
R(3, 5) = 14, let’s look at RR(13, 3, 5). We check that FFM(13, 3) really does
return ′done′.

input: ICcheck(FFM(13,3),3,5)
output: (’done’, 4, 2)
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By the end of 100 iterations, we get a graph with independence number 5 and
clique-number 4. I’ll increase the iteration and let’s see if we ever hit a Ramsey
graph:

After 1000 iterations, we get close, but never quite hit a graph with I = 4 and
C = 2 at the same time.
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To see what it looks like when we do hit a Ramsey graph, watch the way the
independence and clique numbers of RR(5, 3, 3) swap back and forward until
they finally land on (2, 2), which is the Ramsey graph for R(3, 3) = 6.

This is a screenshot including the input and output. One thing I added was ‘lt‘
= last two graphs. That way if we recieve a ’done’, we can see what the previous
graph was, in this case it’s a graph object, but in general, I’m outputting the
adjacency matrix so that it’s easy to replicate the graph if found. And while
the last took about 25 iterations to stop, the following took only 5:
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But when trying to find the R(4, 4) Ramsey graph, for example, we look at
RR(17, 4, 4), which seems to be stuck with graphs with 4/5-cliques and inde-
pendent sets.

Let’s look at one with the inputs further apart. For example, we have the best
current bounds 39 < R(3, 10) < 44, so let’s look at RR(40, 3, 10), with 20000
iterations. The best pair we find is I = 12 and C = 3, which only gives the
bound R(4, 13) > 40, while the current best is R(4, 13) > 132. It did also find
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R(3, 14) > 40, while the best lower bound is R(3, 14) > 65, so that’s better.
The list at the bottom is new pairs (I, C) as we find them.

The whole plotting part is weighing down the memory a ton, so let’s rewrite this
to get the (I, C) values explicitly. I also just realized writing it like this is con-
fusing when the inputs look like (C, I). So from now on, we’ll always list cliques
first. Anyway, here are a few graphs randomly sampled from RR(22, 3, 7), since
we know R(3, 7) = 23.

For graphs on larger numbers of vertices, this gets computationally heavy as it
just builds more and more sparse graphs until there are enough edges to be inter-
esting. So let’s try altering the program by beginning with a Erdos-Renyi graph
with p = 1/2, meaning we randomly add edges between vertices with indepen-
dent probability 1/2. In Sagemath, this command is graphs.RandomGNP (n, p).

In this case, we are looking at RR(60, 4, 4) and the graph we initially gen-
erated had C = I = 8. This looks ridiculous, but I’ll show it anyway. The best
bound we get from this is R(7, 7) > 60, which is far from the best R(7, 7) > 204.
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Another thing I’d like to try calculating is the average number of iterations
it takes to take a reach a Ramsey graph in a case we know like RR(5, 3, 3)
or RR(8, 3, 4). Running RR(8, 3, 4) a thousand times, here are the number of
iterations each attempt took, with average 28.101.

Repeating this sampling ten more times gives the following averages.

[27.539, 28.078, 27.206, 28.781, 28.487, 26.687, 26.408, 28.041, 28.963, 27.612]

which makes it seem like perhaps the expected number of iterations should be
28. To be more formal, the central limit theorem tells us that as we take more
and more samples, the average of the above set will converge to the true average.
Letting it run 50 times, our average is 27.65. Another 50 sample means give an
estimated population mean of 27.745. And one more time gives 27.691 with a
standard deviation of 0.667.

Let’s do this with RR(5, 3, 3) and see what we get. Using 100 sample means,
we get an average of 10.445 with standard deviation 0.241.
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Rewriting the code to let it run until it hits a Ramsey graph is awesome!
For another example, since we know R(3, 5) = 14, we can look at RR(13, 3, 5).
Doing so returned a Ramsey graph after 88720 iterations. On the left is the
graph we got and on the right is its complement.

The pairs we hit along the way were

[(4, 4), (3, 4), (3, 5), (4, 5), (3, 6), (2, 5), (2, 6), (4, 6), (3, 7), (2, 4)]

And we can use ‘G.is_isomorphic(F )′ to confirm that this graph is isomorphic
to FFM(13, 3). But we actually didn’t even need that, since McKay has con-
firmed there exists a unique Ramsey graph on 13 vertices for R(3, 5). Another
search returned one after 74228 iterations.

This takes a bit longer to return a graph, so doing it 1000 times might be
too much. Let’s at least do 10 - which gives an average of 187850 with standard
deviation 190089. What in the world? The plot of the number of iterations
reveals why:
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Running this again gives an average of 142153 with a standard deviation of
82406, and plot:

Averaging these gives 165000 iterations. But this is far too small to use the
CLT. Generating 10 graphs seems to take about 8 minutes, so we’ll do that 30
times, which means it will take around 4 hours!

So let’s go ahead and generate a sample with 10 graphs still, but we’ll take
30 samples. After four hours, I ran out of memory! But we did generate 18
values, giving an estimated population mean of 273939 and standard deviation
of 87526. And here is a plot of the sample means.

[181634.1, 328795.2, 248980.7, 168252.9, 257147.8, 289458.2,
236347.2, 309039.5, 134261.1, 154436.8, 290360.5, 397805.1,
260961.4, 355983.4, 214247.6, 267138.6, 451991.5, 384073.1]

It seems like the standard deviation is so high here because of that fact that we
only sampled 10 graphs instead of 1000. The first few took only 70-90 thousand,
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while sometimes they take 685323 iterations and go through the following pairs
(C, I):

[(4, 5), (4, 4), (3, 4), (3, 5), (3, 6), (2, 5),
(4, 6), (2, 6), (3, 7), (2, 7), (4, 7), (2, 4)]

I’m going to go ahead and let RR(37, 4, 6) run for a bit! Nothing. Now I’ll let
RR(36, 4, 6) go. We find no Ramsey graph but the (C, I) pairs we picked up, in
order, are

[(7, 8), (6, 7), (6, 6), (5, 6), (5, 5), (6, 5), (5, 7), (4, 6), (4, 7), (5, 8), (4, 8), (6, 8), (7, 6)]

And then it ran out of memory. I’m going to run it again and keep track of the
number of iterations: at least . The pairs we got from this in order are:

[(6, 7), (6, 6), (6, 5), (5, 6), (5, 5), (5, 7), (4, 6), (4, 7), (5, 8), (7, 6), (4, 8), (7, 7), (6, 8)]

It’s also interesting how similar the two lists look. Though the second picked
up (7, 7), which was missed the first time around. Still no (3, 5).

19.1 Flipped Perspective
Let’s flip our perspective from finding bounds for R(a, b) to fixing an n and
finding pairs (a, b) for which R(a, b) > n. In particular, if we fix an a, then we
have a unique smallest b such that R(a, b) > n. So let’s define

R−1
n (a) = min({b | R(a, b) > n})

to be that minimum b. For example, fixing n = 20, we get

R−1
20 (2) = 21

R−1
20 (3) = 7

R−1
20 (4) = 5

R−1
20 (5) = 4

R−1
20 (6) = 4

R−1
20 (7) = 3

...
R−1

20 (20) = 3
R−1

20 (21) = 2
Notice that for all n, R−1

n (a) stabilizes to the constant function 2 for a > n.
Also we could say that R−1

n (1) =∞.
We know relatively few Ramsey numbers, so how many of these can we pin

down? The lowest unknown number’s bound is 35 < R(4, 6) < 42. This tells
us that R−1

37 (4) is either 5 or 6. Similarly, the values R−1
n (4) are unknown for

n = 38, 39, 40, but we can definitely say R−1
n (4) = 6 for all n ≥ 41. Here is

a table of values, with columns n and rows a, with an entry colored red if its
value is unknown.
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n\a 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2
4 5 3 3 2 2 2 2 2 2 2 2 2 2 2 2
5 6 3 3 3 2 2 2 2 2 2 2 2 2 2 2
6 7 4 3 3 3 2 2 2 2 2 2 2 2 2 2
7 8 4 3 3 3 3 2 2 2 2 2 2 2 2 2
8 9 4 3 3 3 3 3 2 2 2 2 2 2 2 2
9 10 5 4 3 3 3 3 3 2 2 2 2 2 2 2
10 11 5 4 3 3 3 3 3 3 2 2 2 2 2 2
11 12 5 4 3 3 3 3 3 3 3 2 2 2 2 2
12 13 5 4 3 3 3 3 3 3 3 3 2 2 2 2
13 14 5 4 3 3 3 3 3 3 3 3 3 2 2 2
14 15 6 4 4 3 3 3 3 3 3 3 3 3 2 2
15 16 6 4 4 3 3 3 3 3 3 3 3 3 3 2
16 17 6 4 4 3 3 3 3 3 3 3 3 3 3 3
17 18 6 4 4 3 3 3 3 3 3 3 3 3 3 3
18 19 7 5 4 4 3 3 3 3 3 3 3 3 3 3
19 20 7 5 4 4 3 3 3 3 3 3 3 3 3 3
20 21 7 5 4 4 3 3 3 3 3 3 3 3 3 3
21 22 7 5 4 4 3 3 3 3 3 3 3 3 3 3
22 23 7 5 4 4 3 3 3 3 3 3 3 3 3 3
23 24 8 5 4 4 3 3 3 3 3 3 3 3 3 3
24 25 8 5 4 4 3 3 3 3 3 3 3 3 3 3
25 26 8 6 5 4 4 3 3
26
27
28 29 9 6 5 4 4 4 3
29
30
31
32
33
34
35
36
37
38
39
40
Fixing a column, we’re looking at how big independent sets can get in a

graph with an a-clique, as we increase the number of vertices. Fixing a row,
we’re looking at how big independent sets can get in a graph with n vertices,
while we increase the size of the largest clique.
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But another fun way to look at charted data is the diagonals and off-
diagonals. In fact, the proof of Ramsey’s Theorem for two colors is exactly
by induction on a + b, which can be interpreted as inducting along the finite-
length off-diagonals. We’ll list the infinite-length diagonals first, and then do
the off-diagonals. The first obvious diagonals are

R−1
n (n+ k) = 2 for k > 0

R−1
n (n) = 3

Now let’s look at R−1
n (n− k) for k > 0. This will always stabilize at 3, so we’ll

stop once we hit one 3.

k diagonal sequence
1 4,3
2 5,3
3 6,4,3
4 7,4,3
5 8,4,4,3
6 9,5,4,3
7 10,5,4,3
8 11,5,4,3
9 12,5,4,4,3
10 13,5,4,4,3
11 14,6,4,4,3
12 15,6,4,4,4,3
13 16,6,4,4,4,3

To prove it really does stabilize, we can appeal to pretty much any lower bound
on the off-diagonal Ramsey numbers (for a good bound, see this blog post by
Qiaochu Yuan) to see that R(n− k, 3) > n implies R(n+ 1− k, 3) > n+ 1.

The following table consists of the finite off-diagonals R−1
n (k − n) for n =

2, . . . , k − 2.
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k off-diagonal sequence
4 3
5 4,2
6 5,3,2
7 6,3,2,2
8 7,3,3,2,2
9 8,4,3,2,2,2
10 9,4,3,3,2,2,2
11 10,4,3,3,2,2,2,2
12 11,5,3,3,3,2,2,2,2
13 12,5,4,3,3,2,2,2,2,2
14 13,5,4,3,3,3,2,2,2,2,2
15 14,5,4,3,3,3,2,2,2,2,2,2
16 15,5,4,3,3,3,2,2,2,2,2,2
17 16,6,4,3,3,3,3,2,2,2,2,2,2,2

Some things we could look at:

• Lengths of each sequence and ratios of lengths/sums of consecutive se-
quences

• Sums and averages of each sequence

• Lengths of arithmetic progressions in sequence of sums

For the off-diagonals, their lengths are clearly just k. But the truncated
diagonals seem to not be so regular. We could also consider the off-diagonal
truncated at the first 2.

Lengths of Truncated Diagonals

2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6

Lengths of Truncated Off-Diagonals

1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8

Sums of Truncated Diagonals
k 1 2 3 4 5 6 7 8 9 10 11 12 13

7 8 13 14 19 21 22 23 28 29 31

Sums of Off-Diagonals
k 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3 6 10 13 17 21 25 28 33 37 41 44 45 52
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Sums of Truncated Off-Diagonals
k 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3 6 10 11 15 17 21 22 27 29 33 34 35 40

The first sequence is found in 5 OEIS entries, so we’ll have to calculate it
further. The second sequence gives 3 OEIS entries. The last three are not in
the OEIS but subsequences give various interesting possibilities.

20 Infinite Ramsey Numbers
A fun generalization of Ramsey’s Theorem is extending it to infinite sets. Specif-
ically, it tells us that if we have an infinite setX and we color the set of n-element
subsets X(n) with c colors, then there exists an infinite subsetM so thatM (n) is
monochromatic. The infinite version implies the finite version, but the infinite
version is “stronger” in a set-theoretic sense.

A well-known theorem in this area is the already-mentioned Van der Waer-
den’s theorem, which says that for all positive integers r, k, there is some number
N so that any coloring of {1, . . . , N} with r colors contains a monochromatic
arithmetic progression of length k. A way to interpret this for the infinite ver-
sion is that any coloring of the positive integers with r colors contains arbitrarily
long monochromatic arithmetic progressions.

Another result in this area is Hindman’s Theorem, which says that any
coloring of the positive integers with r colors gives an infinite subset A so that
there is a color i for which the finite sum of one or more elements of A is
always i. Leo Goldmakher gives a wonderful exposition on the proof of this via
ultra-filters, which are topology-type collections of subsets for a given set X.

Some introductions to this subject take a graph-theoretic point of view, while
some are more set-theoretic with ultra-filters and cardinals and all that fun stuff.
I can’t quite find it now, but I think I remember reading a result that we can
even find such an M with the same cardinality of X. I guess this would follow
from the countable union of countable sets being countable.

But I have a question that I haven’t seen people touch on, possibly because
it’s easy? We’ll see! We’ll call the subsetM ⊂ X a Ramsey Set for our coloring.

Question 5 Given a Ramsey set M ⊂ X, what is the relative density of M?

And now that I wrote it, it really is easy. Given any subset M ⊂ X with the
desired density, we could choose the indicator function for M to be the coloring
of X, which grants Mc = M with whatever density we want.

There are various applications of this infinite Ramsey theory in analysis, and
of course in number theory. The natural way to try to apply the theorem is to
deduce a coloring c that guarantees the set Mc is the one we’re interested in.
More generally, we could show that no matter what Mc is, the infinite size of
this set implies the infinite size of the set we’re interested in.

An example of this is Fred Galvin’s corollary to Hindman’s Theorem that
say that there exists an infinite subset A of integers so that any finite sum is
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divisible by an odd number of prime factors. We color Z with a parity function,
but not the parity of n, we color n with the parity of ω(n). Then Hindman’s
Theorem tells us we have an infinite subset A so that any finite sum of elements
of A have the same parity of prime factors. If c(A) = 1, then we’re done.

If c(A) = 0, and we have some prime p that divides no element of A, then
letting pA = {pa | a ∈ A}, we have pa1 + · · · + pat = p(a1 + · · · + at), so
c(2A) = 1. To guarantee such a prime, instead of coloring Z, we can color the
subset {pn + 1} for all n ∈ Z. Then we can be sure that c(A) = 0 implies
c(pA) = 1.

That last paragraph is the key! No matter what infinite set we got, it implied
there was a subset where the sums have an odd number of prime factors, because
of a clever choice of what set to color. Does a simple replacement of ω(n) above
with some other arithmetic function tell us anything interesting?

And I just realized that wasn’t actually Galvin’s corollary. We proved that
there exists an infinite A ⊂ Z so that any finite sum has an odd number of
distinct prime factors. Galvin’s corollary was that any finite sum has an odd
number of prime factors, i.e. looking at the parity of Ω(n). Then if c(A) = 0,
we easily have c(2A) = 1. What if we replaced ω(n) or Ω(n) with another
arithmetic function f(n), and we chose a coloring defined by the parity of f(n)?

Another cool generalization of this comes from looking at N as a semigroup,
which is a group minus the requirement of inverses. The study of semigroups
is a very rich area of research, and is a area close to my heart! I spent a while
studying certain classes of semigroups arising from number fields with a friend
while I was in grad school. Now that I’m reminded of this work, I see a few
connections to the things we already discussed.

But first, back to the topic, this paper Hindman’s Coloring Theorem in
Arbitrary Semigroups by Golan and Tsaban extends the theorem to arbitrary
semigroups using a classification by Shevrin of semigroups in On the theory
of periodic semigroups (1974). This classification is something I definitely
want to dig deeper into in!

The paper notes a result already known is that if we color the elements of
a numerical semigroup with finite colors, then we can find distinct elements
a1, a2, . . . such that all but finitely many finite subsets have sum a1 + · · · + at
colored the same color. Golan and Tsaban give a characterization of when we
can actually find a subsemigroup T ⊂ S so that all but finitely many members
of T are the same color. This is true even for non-abelian semigroups but I like
the additive notation since we’re talking here mostly about abelian semigroups.

21 To Semigroups
Studying semigroups appeared for me in two ways. The first was the “chicken
nugget problem”, which asks the question: If McDonald’s sells a 6-pack, a 9-
pack, and a 20-pack of McNuggets, then what is the largest number of nuggets
we cannot form as some combination of these?. The second was after I knew a
lot more math and worked with a good friend on numerical semigroups when I
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went to the University of Michigan for grad school for a few years before leaving.
Really, this is a sneaky way to talk about ideals! Recall that a subset I ⊂ R of
a ring R is called an ideal if

I is a subgroup of R

For all r ∈ R, we have rI ⊂ I.

My original Abstract Algebra professor (and later my research mentor) Cassie
Williams described ideals as sponges, and the analogy has always stuck.

The ideals of Z are well understood - nZ = {na |a ∈ Z} - and the study
of ideals of other rings is essentially the basis of algebraic number theory! For
example, the class group (the size of which is the class number) of a number field
K is a group of ideals that encodes unique factorization in the ring of integers
of K. Many of the results we’ve already dicussed come from such things.

An ideal P is called prime if P 6= R and ab ∈ P implies a ∈ P or b ∈ P .
Compare this to divisiblity of a prime number in N. The collection of all prime
ideals of a ring R is called the spectrum of R. We can look at the spectrum of
a ring combinatorially by considering the poset their collection forms, ordered
by inclusion.

We’re often interested in maximal ideals in this poset, and if a ring R has a
unique maximal ideal m, then it is called a local ring. As a big topic in Number
Theory is the Local-Global Principle (also called the Hasse Principle), the study
of local rings is helpful for studying local properties of different objects.

The spectrum of Z is the zero ideal and a maximal ideal for each prime p.

(0)

. . .(2) (3) (5) (7) (11)

. . .

Figure 35: The spectrum of Z

To characterize ideals in N, we use similar reasoning to showing that all
ideals in Z are principal (= generated by 1 element). The way that goes is by
considering the ideal generated by a, b ∈ Z. Then by Euclid’s algorithm, there
exists integers x, y so that ax+ by = gcd(a, b). It follows that every element in
(a, b) is a multiple of gcd(a, b), so (a, b) = (gcd(a, b)).

For N, ideals are clearly not all principle. For example, the maximal ideal
is (2, 3) = {0, 2, 3, 4, . . . }. In general, if we have a finite subset A ⊂ N, we can
generate an ideal from A and as Euclid’s algorithm uses negative numbers, we’ll
in general get different ideals for different A.

Notice that the complement (2, 3) = {1}c. A few more examples are

(3, 4, 5) = {1, 2}c
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(2, 5) = {1, 3}c

(4, 5, 6, 7) = {1, 2, 3}c

An ideal of N with finite complement is called a numerical semigroup. The
ideals of N can then be characterized as follows:

• Principal ideals with infinite complement.

• Numerical Semigroups

And we can characterize exactly when we generate a numerical semigroup from
examining Euclid’s Algorithm.

Theorem 29 The set A = {a1, . . . , at} generates a numerical semigroup if and
only if gcd(a1, . . . , at) = 1

Proof 9 The forward direction is easy by contrapositive: If g = gcd(a1, . . . , at) 6=
1, then A ⊂ gZ, so its complement is infinite. The backward direction appeals to
Schur’s Theorem, which gives asymptotics for the number of ways to represent a
number x as a linear combination of elements of A, given g = 1. Letting rA(x)
be this number, then

rA(x) ∼ xt−1

(t− 1)!a1 . . . at
(1 + o(1))

Which shows that there exists z ∈ N so that rA(x) ≥ 1 for all x ≥ z.

Proof 10 (Proof of Schur’s Theorem) I want to detail this proof here just
for completeness! This proof is found on page 98 of Generatingfunctionology by
Herbert Wilf.

First, notice that if x = b1a1 + · · ·+ btat, then we have a partition of x. In
fact, we could consider it as

x = a1 + · · ·+ a1︸ ︷︷ ︸
b1 copies

+ a2 + · · ·+ a2︸ ︷︷ ︸
b2 copies

+ · · ·+ at + · · ·+ at︸ ︷︷ ︸
bt copies

and notice that x is a partition of arbitrary length with parts in A. To count the
number of partitions with parts in A, we modify the usual partition generating
function by only multiplying over those a ∈ A.

t∏
i=1

1
1− qai =

t∏
i=1

(1+qai+q2ai+. . . ) =
∞∑
x=0
|{partitions of x with parts in A}|qx

But that coefficient is exactly rA(x), so we’ve found our generating function

∞∑
x=0

rA(x)qx =
t∏
i=1

1
1− qai
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By partial fractions and the fact that each ai are distinct, we can find Ci so that

t∏
i=1

1
1− qai =

t∑
i=1

Ci
1− qai

But we go even further, and decompose it over C, as linear functions with roots
the athi roots of unity. The contribution of a pole of order r to the total sum is
αxr−1 for some constant α, since

1
(1− q)r =

∞∑
k=0

(
k + r

r

)
,

and the binomial coefficient is an (r − 1)st degree polynomial over (r − 1)!, so
asymptotically xt−1/(t− 1)!.

As gcd(A) = 1, the orders of the poles at these non-1 roots of unity are less
than t. The pole at q = 1 has order t, so gives contribution xt−1/(t− 1)!, which
is asymptotically larger than the contribution of any other roots. Therefore,

rA(x) ∼ α
(

xt−1

(t− 1)!

)
To figure out the value of α, we look at

lim
q→1

[
(1− q)t

t∏
i=1

1
1− qai

]
= 1
a1 . . . at

through repeated applications of L’Hospital’s Rule. Therefore,

rA(x) ∼ xt−1

(t− 1)!a1 . . . at

I want to remind you of the comment I made back at the beginning of
section 19 on the connectivity of Random Ramsey Graphs. The statements of
Theorem 28 and the previous theorem are equivalent. Both are saying that we
have to eventually connect if the generators are relatively prime. In the case of
numerical semigroups, this guarantees a finite complement.

Which means we have a numerical invariant we can assign to the ideals of N,
the cardinality of their complement. This is called the genus of the numerical
semigroup, and the largest element of the complement is called the Frobenius
number. Going back to the Chicken Nugget Problem, the answer comes down
to determining the Frobenius number of the numerical semigroup generated by
(6, 9, 20), which is equal to 43.

One fun direction to go here is in counting numerical semigroups of a fixed
genus, for which this paper by Nathan Kaplan is a good reference. A wonderful
result here (due to Bras-Amoros) is that the number of numerical semigroups
of genus g has Fibonacci-type asymptotic growth!
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But continuing on, we’ve shown that any set A with gcd(A) = 1 will generate
a numerical semigroup S and in the other direction, we get that any numeri-
cal semigroup has some set of generators, and therefore has a minimal set of
generators. The size of this minimal set is called the embedding dimension of
the semigroup and the smallest element is called the multiplicity. If you haven’t
guessed, there is a geometric point of view going on inspiring the study of these
semigroups!

Now that we’ve figured out what the ideals of N look like, do we get any
new prime ideals? Well, the maximal ideal (2, 3) is prime (since it’s maximal).
Given any other numerical semigroup S, we have a Frobenius number F (S),
which is the largest integer not contained in S. So F (S)2 ∈ S, while F (S) 6∈ S.
So S cannot be prime. So the spectrum of N adds just a single unique maximal
ideal.

(2, 3)

(0)

. . .(2) (3) (5) (7) (11)

. . .

. . .

Figure 36: The spectrum of N

The friend I previously mentioned is Trevor Hyde. A lot of the following
perspective is from him, and I am incredibly thankful for it. There is a lot of
algebraic geometry I don’t feel I could explain well enough, so I’ll skip a lot of
that.

We can think of the spectrum of a ring as a topological space when equipped
with the Zariski Topology, but we can also think of it as a functor from the
category of rings to the category of locally ringed spaces. One of the things I
love is when something we learn in a class “long ago” reappears to give a cool
new fact.

In this case, recall a fact proved in a first or second Abstract Algebra course:
If φ : R → S is a ring homomorphism, then the preimage of a prime ideal is a
prime ideal. If P ⊂ R is a prime ideal, then we want to show φ−1(P ) ⊂ R is too.
So suppose ab ∈ φ−1(P ). Then φ(ab) ∈ P , and since φ is a ring homomorphism,
φ(ab) = φ(a)φ(b). Since φ(a)φ(b) ∈ P , we know one of the two must be in P ,
so WLOG, let φ(a) ∈ P . Then a ∈ φ−1(P ), so φ−1(P ) is prime.

This “pulling-back” idea is very common, as it’s a helpful way to get infor-
mation about desired spaces. For the categorical perspective, the previous fact
shows that any map φ : R → S induces a map φ∗ : Spec(S) → Spec(R), given
by φ∗(P ) = φ−1(P ). Because the sets swap, this is a contravariant functor.
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Considered as semirings, the inclusion N ↪→ Z induces an injection Spec(Z)→
Spec(N). But the pre-image of our new prime (2, 3) is empty under this map,
which means Spec(Z) can’t “see it”, so to speak. This lead us to hope that
studying semirings might reveal important properties of algebraic structures
that we can’t get from rings.

Maybe I’ll get more into it later, but I do want to return to the coloring
stuff. So here is a summary of some of the results we found. I’m not claiming
any of these as original, and many of these ideas can probably be found in
literature on the study of semigroups/semirings/semifields. And of course, I’ll
see if the coloring perspective of Hindman’s theorem could give any insights to
these results/questions.

1. The prime fields are Q and Fp, since every field has one of these two
as subfields. The prime semifields are Fp,Q+, and one extra semifield
called B = {0, 1}, the Boolean semiring, with 1 + 1 = 1. This is the first
example of a semiring with an infinity element ∞. But there are many
more examples!

2. Define an additive version of ideals and quotients for semirings, and ex-
tend the study of Orders of rings and rings of integers to semirings inside
extensions of the semifield Q+.

3. Calling a totally positive extension of Q+ an arithmetic semifield K, we
can show that it has a unique maximal ideal M(K). Letting UK be the
semigroup of units in K, then we can explicitly say

M(K) = O+
K − UK

4. Defining the ring of totally positive integers O+
K analogously, the spectrum

Spec(O+
K) is the cone of Spec(OK) with added point M(K).

5. With the additive version of quotients mentioned above, we can show

O+
K/(M(K)− {0}) ∼= UK ,

where UK is called the small semiring, defined set-wise as UK ∪{0,∞}.
As a semiring, we define multiplication of units as normal, and define

0∞ = 0 and u1 + u2 =∞, ∀ui ∈ UK
We can think of this as (1) 0 kills everything, (2) multiplication of units
stays bounded, (3) addition of units is unbounded. Doing an example with
the classic semiring: N. We have M(Q+) = (2, 3) = {0, 2, 3, 4, . . . } so

N/(2, 3) = {0, 1,∞}.

0 1 ∞ = 2 = 3 = . . .

Figure 37: The quotient N/(2, 3)
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6. This point I consider important, so I’m separating it from the previous.
Removing additive inverses is exactly what allows this infinity element
to exist in semirings! And the addition of this naturally allows for the
study of the infinite/archimedean place. This again is near and dear to
my heart because one of my first research projects was on evaluating a
product formula over the places of Q, and relating it to a ratio of class
numbers. The archimedean place had to be dealt with in a fairly different
way than the finite places.

7. Finally, we can establish a bijection between numerical semigroups in N
and partitions using hooklengths. A good source on this is this paper by
Keith and Nath. This gives an example of when the symmetric difference
is helpful, as the generating function

DA(x) = 1
2 + 1

2
∑

n∈A∆(1+A)

xn

determines the partition that corresponds to a given set of gaps A (mean-
ing Ac is a numerical semigroup). This generating function can be defined
as a Hilbert Series, as detailed in this wonderful paper Numerical Semi-
groups: Apery Sets and Hilbert Series by Ramirez Alfonsin and Rodseth.
We relate this to the additive version of ideals and to the size of their
minimal generating set.

8. The previous example shows that numerical semigroups in N can be thought
of as a smooth curve cutting the plane in half, with particular importance
of the additive ideals. Then looking at numerical subsemigroups of O+

K

could (perhaps) be thought of as generalized plane partitions.

22 Back to Hindman (or Distracted by N(g) ≥
N(g − 1))

That was a very fun reminder! I’d love to see whether Hindman’s coloring
theorem gives us any insights on semigroups or semirings. In fact, I wonder if
a version of Hindman’s theorem for semirings is proven? I can’t seem to find
anything about work on a version for rings, so I’m not sure. One version of this
I’d like to investigate is

Question 6 If we color the elements of a ring R with a finite amount of col-
ors, does there exist an infinite subset M ⊂ R so that the sum of any finite
subset of M is monochromatic and the product of any finite subset of M is
monochromatic, with a finite number of exceptions?

Before thinking about that, does the theorem say anything about numerical
semigroups in particular? Shevrin’s characterization of semigroups relies on two
notions. A semigroup is called periodic if the subsemigroup (s) generated by
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any s ∈ S is finite. A semigroup S is called left (right) zero if ab = a (ab = b)
for all a, b ∈ S. The characterization is given as follows:

Theorem 30 (Shevrin) Every infinite semigroup has a subsemigroup of the
following type:

1. (N,+)

2. An infinite periodic group

3. An infinite right zero or left zero semigroup

4. (N, ), where nm = max(n,m).

5. (N, ), where nm = max(n,m).

6. An infinite semigroup S with S2 finite.

7. The fan semilattice (N, ), where nm = 1 for distinct n,m.

Restricting our focus back to numerical semigroups, there is another property
that I’m interested in that I haven’t seen looked at in the literature. For a
numerical semigroup S, let π(S) denote the number of gaps that are prime. In
other words, π(S) counts the number of primes not represented by a1x1 + · · ·+
atxt, for A = {ai} a generating set for S. We’ll sort by genus.

Sc g(S) π(S)
{1} 1 0
{1, 2} 2 1
{1, 3} 2 1
{1, 2, 3} 3 2
{1, 2, 4} 3 1
{1, 2, 5} 3 2
{1, 3, 5} 3 2
{1, 2, 3, 4} 4 2
{1, 2, 3, 5} 4 3
{1, 2, 3, 6} 4 2
{1, 2, 3, 7} 4 3
{1, 3, 4, 5} 4 2
{1, 3, 4, 6} 4 1
{1, 3, 5, 7} 4 3

Looking up partial sequences on OEIS of π(S) return some interesting entries,
but by [0, 1, 1, 2, 1, 2, 2, 2, 3, 2, 3, 2], it returns nothing. And here is a table for
the average of π(S) over all numerical semigroups of genus g.
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g 1 2 3 4 5 6 7
avg(π, g) 0 1 7/4 16/7 11/4

If S ⊂ T , then T c ⊂ Sc, so

S ⊆ T =⇒ π(T ) ≤ π(S)

It’s helpful to be more explicit and write

avg(π, g) = 1
N(g)

∑
|S|=g

π(S)

As mentioned before, it has been shown that N(g) has Fibonacci-type growth.
Specifically, Zhai (an undergraduate!) proved parts 2 and 3 of a conjecture of
Bras-Amoros that said

1. N(g) ≥ N(g − 1) +N(g − 2) for g ≥ 2.

2. lim
g→∞

N(g−1)+N(g−2)
N(g) = 1

3. lim
g→∞

N(g)
N(g−1) = φ = 1.618 . . . .

The previously mentioned paper by Nathan Kaplan on counting numerical sub-
groups by genus has a nice outline of Zhai’s proof as well as a wealth of other
information of numerical semigroups. One thing he notes is that the first part
of the conjecture is still completely open. In fact, even the conjecture that the
number of semigroups of genus g is increasing in g is not proven! That is, no
one can prove

N(g) ≥ N(g − 1).

Go ahead, give it a shot! A natural attempt would be to find some way to map
the set of numerical semigroups of genus g − 1 to the set of genus g. This is
very difficult once you start trying. For example, it’s not hard to notice that if
S is a numerical semigroup of genus g, then F (S) = max(Sc) can’t be written
as a combination of elements in S, so S ∪ {F (S)} is a numerical semigroup of
genus g − 1.

This leads to the idea of the numerical semigroup tree. That paper has a
wonderful graphic of the tree up to layer 4 on page 3, but I’ll post one here in
terms of the set of gaps instead of the generating set.
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{}

{1}

{1, 2} {1, 3}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 3, 6} {1, 2, 3, 7} {1, 2, 4, 5} {1, 2, 4, 7} {1, 3, 5, 7}

We form the tree by starting with a numerical semigroup, and continually adding
Frobenius numbers until our semigroup is just N. We do this for every semigroup
we have.

But this isn’t usually how we define rooted trees - what if we wanted a
description starting from the root N? Then we need to ask how many S′ of
genus g−1 are of the form S′ = S∪{F (S)} for some S of genus g. If we remove
an element of x ∈ S′ and x = s1 + s2, for some s1, s2 ∈ S′, then this new set
couldn’t be a numerical semigroup. If that doesn’t happen, then it is. We call
an element x irreducible if it cannot be written as the sum of two elements in
S. Then for x > F (S′),

S′ − {x} is a numerical semigroup ⇔ x is irreducible

If x is irreducible, then it must be a generator of S′. Letting Irr(S′) be the
set of all irreducible elements of S′, we see that this must be a minimal generat-
ing set. Then the elements we’re allowed to remove are exactly those elements
in Irr(S′) that are bigger than F (S′). We call these effective generators, and
denote the number of them as h(S′), the efficacy of S′. For example,

• All generators of an ordinary numerical semigroup {0, g+1, g+2, . . . } are
effective.

• The numerical semigroup (2, 5) = {0, 2, 4, 5, 6, 7, . . . } = {1, 3}c has one
effective generator, 5, while 2 is not effective since 2 < 3.

• The numerical semigroup (3, 5) = {0, 3, 5, 6, 8, 9, 10, . . . } = {1, 2, 4, 7}c has
no effective generators since both generators of (3, 5) are less than 7.

So starting at a vertex S, its children are S−{x} for all effective generators
x of S. Which means the number of children of S is h(S). So by analyzing
effective generators and getting some hold on h(S), Zhai was able to prove
the conjectures about the growth of the tree. Previous work by Bras-Amoros,
for example, showed that the semigroup tree below the ordinary semigroup
{0, g + 1, g + 2, . . . }c has a subtree with 2Fg nodes at level g, where Fg is a
Fibonacci number.
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In general, letting t(g, h) be the number of numerical semigroups of genus g
with h effective generators, we have that

N(g) =
∑
h

t(g − 1, h)h

so we can explain the possible failure of N(g) ≥ N(g−1) with the fact that there
are too many numerical semigroups of genus g− 1 with no effective generators.

In fact, though initially it may seem like we have lots of choices to remove,
a consequence of a theorem of Evan O’Dorney’s on the growth of t(g, h) tells us
that asymptotically, the probability of a numerical semigroup having no children
is φ−2 ≈ 0.382.

22.1 Ordinarization
Another map we could look at is removing the multiplicitym(S) = min(S−{0})
from a set S. This increases genus, and we can ask like before when some S′
of genus g + 1 is of the form S′ = S − {m(S)}? Instead of every vertex ending
at N, which gave a nice tree structure, this operation returns a single numerical
semigroup of genus g + 1 for each of genus g. But this map isn’t injective.

If we just start with N, then we just get a sequence of ordinary numerical
semigroups. So we’ll form a graph by forming such sequences with each known
numerical semigroup and gluing them together.

{}

{1}

{1, 2} {1, 3}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 3, 6} {1, 2, 3, 7} {1, 2, 4, 5} {1, 2, 4, 7} {1, 3, 5, 7}

Maria Bras-Amoros combined the two previous transformations of numer-
ical semigroups and called it the Ordinarization Transform. Sending S to
S ∪ {F (S)} − {m(S)} gives a map from genus g to genus g which always sta-
bilizes on the ordinary semigroup (g + 1, g + 2, . . . , 2g + 1) = {1, . . . , g}c. For
example,

S = (3, 5) = {1, 2, 4, 7}c.

S′ = (3, 5) ∪ {7} − {3} = {1, 2, 3, 4}c = (5, 6, 7, 8, 9).

Another example,
S = (2, 9) = {1, 3, 5, 7}c
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S′ = (2, 9) ∪ {7} − {2} = {1, 2, 3, 5}c = (4, 6, 7, 9)

S′′ = (4, 6, 7, 9) ∪ {5} − {4} = {1, 2, 3, 4}c = (5, 6, 7, 8, 9)

Which means we can form a poset from the numerical semigroups of genus g.
For g = 3, this looks like

{1, 2, 3}

{1, 2, 4} {1, 2, 5} {1, 3, 5}

And for g = 4, it looks like

{1, 2, 3, 4}

{1, 2, 3, 5} {1, 2, 3, 6} {1, 2, 3, 7} {1, 2, 4, 5} {1, 2, 4, 7}

{1, 3, 5, 7}

The Ordinarization Number of S, which we’ll denote ON(S), is its depth in this
tree. Letting N(g, r) be the number of numerical semigroups of genus g and
ordinarization number r, Bras-Amoros conjectures that

N(g, r) ≥ N(g − 1, r).

Since N(g) =
∑
rN(g, r), this would imply the inequality N(g) ≥ N(g − 1).

To try to visualize this, I want to combine the two trees we had before,
coloring an edge blue if it comes from adding F (S) and coloring it red if it
comes from removing m(S), and purple if it’s both.

{}

{1}

{1, 2} {1, 3}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 3, 6} {1, 2, 3, 7} {1, 2, 4, 5} {1, 2, 4, 7} {1, 3, 5, 7}

The only purple edges will be those between ordinary semigroups, since S
and S′ having a red edge means S′ = S−{m(S)}, and having a blue edge means
S = S′ ∪ {F (S)}. So a purple edge means m(S) = F (S) + 1, so S is ordinary.
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The ordinarization number of S in terms of this graph is half the length
of the shortest path from S of genus g to the ordinary numerical subgroup of
genus g. We can start with either blue or red edges. For example, starting with
S = {1, 3, 5}, we see ON(S) = 1, since the shortest paths are

{1, 3}

{1, 2, 3} {1, 3, 5}

{1, 2, 3, 5}

and ON({1, 3, 5, 7}c) = 2, given by these paths (and more)

{1, 2, 3, 4}

{1, 2, 3}

{1, 3}

{1, 3, 5, 7}{1, 2, 3, 5}

{1, 3, 5}

Although the colors don’t have to alternate, the fact that we end on the
same level means the number of blue edges (up) must be equal to the number
of red edges (down).

Looking at a few examples quickly leads you to the following theorem (proven
in Bras-Amoros):

Theorem 31 The maximum value of ON(S) is bg/2c, and the unique semi-
group that achieves this is

(2, 2g + 1) = {1, 3, 5, . . . , 2g − 1}

It’s easy to see the numerical semigroup (2, 2g+1) will have a path of length
g or g − 1 back to Og.

{1, 3, 5, . . . , 2g − 1}c → {1, 3, 5, . . . , 2g − 3}c → {1, 2, 3, 5, . . . , 2g − 3}c →

→ {1, 2, 3, 5, . . . , 2g − 5}c → {1, 2, 3, 4, 5, 7, . . . , 2g − 5} → . . .

In general, counting paths of length r from u to v in a graph G can be done
by looking at the (u, v) entry of Ar. To get a better handle on this, let’s define
some of what we’re talking about more explicitly.

1. The Ordinarization Graph Γ is an edge-labeled graph whose vertex set is
the set of numerical semigroups, with a blue edge between S and S′ if
S′ = S ∪ {F (S)}, a red edge if S′ = S − {m(S)}, and a purple edge if
both.
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2. For some fixed g, let Γg be the subgraph spanned by numerical semigroups
of genus g and g − 1. Notice that if S is genus g, then we will always be
able to recover ON(S) by only looking at numerical semigroups of genus
g and g − 1, since we can remove the multiplicity first, and then add the
Frobenius numbers.

We can picture Γg as a bipartite graph on N(g) +N(g − 1) vertices.

{1}
{1, 2}

{1, 3}

Figure 38: Γ2

{1, 2}

{1, 3}

{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{1, 3, 5}

Figure 39: Γ3

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 3, 6} {1, 2, 3, 7} {1, 2, 4, 5} {1, 2, 4, 7} {1, 3, 5, 7}

Figure 40: Γ4

A wonderful memory from taking my first graduate combinatorics course was
learning about Hall’s Marriage Problem. This is a beautiful characterization of
when a bipartite graph has a perfect matching, and has numerous applications
to other areas.

First, a perfect matching M in a graph G is a choice of edges so that
1. No two edges in M are incident

2. Every vertex is adjacent to an edge in M .
Hall’s theorem tells us that for a bipartite graph G with parts A and B,

G has a perfect matching ⇐⇒ ∀ W ⊂ A, |NG(W )| ≥ |W |
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where NG(W ) is the set of vertices in B adjacent to a vertex in W .
More generally, we call a subset of edges a matching if it satisfies the first

property, no two edges are incident. We call it a maximal pairing if it is maximal
with respect to inclusion, and a maximum pairing if it has the largest number
of edges possible.

So what is a matching of Γg, anyway? It’s a collection of pairs {(S, S′)} so
that S is genus g − 1, S′ is genus g, and

S′ = S − {m(S)} or S = S′ ∪ {F (S′)}

and no numerical semigroup appears in any ordered pair more than once.
A dual concept we can consider is a vertex cover, a subset C ⊂ V so that

every edge has at least one endpoint in C. We similarly call C minimal if it is
minimal with respect to inclusion, and minimum if it has the least number of
vertices possible.

A wonderful theorem of Koning tells us that for bipartite graphs, the size of
a maximum matching is equal to the size of a minimum vertex cover! So we have
a dual way of thinking of the above set: A collection of numerical semigroups
C = {S} of genus g and g − 1 so that every other numerical semigroup S′ of
either genus can be written as either S∪{F (S)} or S−{m(S)} for some S ∈ C.
In this sense, I think it makes sense to look for a minimum such set!

Berge’s lemma gives a nice characterization of maximum matchings in terms
of paths in our graph. We first define an augmenting path with M to be one
that starts and ends at unmatched vertices.

Lemma 2 A matching M is maximum if and only if there is no augmenting
path in G with M .

Proof 11 The proof uses a wonderful observation of the symmetric difference
of two matchings. If M and M ′ are two matchings of G, let G′ = M4M ′.
Then G′ consists of connected components of the form:

1. An isolated vertex

2. An even cycle with edges alternating between M and M ′.

3. A path whose edges alternate between M and M ′, with different endpoints.

Recall that M4M ′ = (M ∪M ′)− (M ∩M ′), so G′ will consist of the edges that
appear in M or M ′ but not both. As both sets are matchings, each vertex in G′
can have at most 2 edges adjacent to it, one from M and one from M ′. It will
be isolated if those two edges are the same edge. Otherwise we have some path
with edges alternating between M and M ′. If this is a cycle, then since a vertex
can’t be adjacent to two edges in M , we must have an even number of vertices
in the cycle.

Then we prove the contrapositive: If M is a matching of G that has an
augmenting path, then M can be made larger. If P is our augmenting path,
then P starts and ends at vertices that are not adjacent to any edge in M . So
taking P4M will be a larger matching. A picture makes it clear.
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The red edges are the ones in M and the fact that the two outside vertices
are unmatched means the symmetric difference swaps the red with the blues,
increasing the number of edges in the matching.

For the other direction, suppose M ′ has more edges than M . Then consider
M4M ′. By the previous observation, this consists of connected components
that are either isolated vertices, even alternating cycles, or alternating paths.

Since M ′ is larger than M , this is not empty. And further, there must be
some component with more edges from M ′ than M . Such a component can’t
be an even cycle, so it must be an alternating path that starts and ends at M ′.
This is an augmenting path for M !

In Γg, every path is of the form S1, S2, . . . , St alternating between genus g
and g−1. Given a maximal matchingM of Γg, we know that any path will either
start or end insideM . Remember why we started all this: The graph Γg encodes
ON(S) for numerical semigroups of genus both g and g − 1 simultaneously. If
we start with a genus g semigroup, then we begin with the operation of adding
the Frobenius number. If we start with a genus g − 1 semigroup, then we start
with the operation of removing the multiplicity.

Letting d(u, v) denote the minimum distance between two vertices in a graph,
and letting Og = {0, g+ 1, g+ 2, . . . }c be the ordinary semigroup of genus g, we
have

ON(S) = 1
2d(S,Og)

Then the set Cg,r = {S ∈ Γg | ON(S) = r} can be thought of like a circle
centered at Og of radius 2r. Its size is the previously defined N(g, r), for which
Bras-Amoros conjectured that for all positive integers g, r,

N(g, r) ≥ N(g − 1, r)

So this is equivalent to showing that |Cg,r| ≥ |Cg−1,r|.

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 3, 6} {1, 2, 3, 7} {1, 2, 4, 5} {1, 2, 4, 7} {1, 3, 5, 7}

Figure 41: Maximum matching (green) in Γ4

And let’s go ahead and do Γ5, why not.
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{1, 2, 3, 4}

{1, 2, 3, 5}

{1, 2, 3, 6}

{1, 2, 3, 7}

{1, 2, 4, 5}

{1, 2, 4, 7}

{1, 3, 5, 7}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 6}

{1, 2, 3, 4, 7}

{1, 2, 3, 4, 8}

{1, 2, 3, 4, 9}

{1, 2, 3, 5, 6}

{1, 2, 3, 5, 7}

{1, 2, 3, 5, 9}

{1, 2, 3, 6, 7}

{1, 2, 4, 5, 7}

{1, 2, 4, 5, 8}

{1, 3, 5, 7, 9}

Figure 42: Γ5

So what’s the matching number for Γg? Recall the condition in Hall’s Mar-
riage problem: That for all W ⊂ A, we have |NG(W )| ≥ |W |. In general, for a
bipartite graph G = (A,B,E), we can define the deficiency of W ⊂ A as

D(W ) = max(0, |W | − |NG(W )|)

and define
DA(G) = max

W⊂A
D(W )

Then Hall’s Theorem is equivalent to saying that

DA(G) = 0⇐⇒ G has a perfect matching

And we can say something more generally about matchings and deficiency of
subsets.
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Proposition 6 The matching number of G is equal to |A| −DA(G), which is
also equal to |B| −DB(G).

For Γg, this means

N(g − 1)−DNg−1 = N(g)−DNg ,

so
N(g)−N(g − 1) = DNg −DNg−1)

This gives us another way to interpret why N(g) ≥ N(g−1) might fail: If Ng−1
is more deficient than Ng. And we get the other direction. Altogether, we have

N(g) ≥ N(g − 1)⇐⇒ DNg ≥ DNg−1

So why might deficiency decrease? If DNg < DNg−1 , then there exists W ⊂
Ng−1 so that D(W ) > D(W ′) for all W ′ ⊂ Ng.

This means |W | − |NG(W )| > |W ′| − |NG(W ′)| for all W ′ ⊂ Ng. So we’d
want W as big as possible while keeping NG(W ) small. Remember that

NG(W ) = {S ∈ Ng | ∃S′ ∈W st S′ = S − {m(S)} or S = S′ ∪ {F (S′)}}.

Exactly one will be S′ = S −{m(S)}, so keeping NG(W ) small means choosing
a subset W ⊂ Ng−1 so that very few S ∈ Ng have S ∪ {F (S)} ∈W .

For example, in Γ5, we could chooseW = {{1, 2, 3, 7}, {1, 2, 4, 7}} on the left
and then D(W ) = 2− 1 = 1. But on the right, we could choose

{{1, 2, 3, 4, 8}, {1, 2, 3, 4, 9}, {1, 2, 3, 5, 6}, {1, 2, 3, 5, 9}, {1, 2, 4, 5, 7}, {1, 2, 4, 5, 8}}

and get D = 6− 3 = 3.
Remember an effective generator of S is a member of the minimal generating

set that is larger than F (S). The number of these is denoted h(S). Effective
generators x are exactly the ones for which S − {x} is a numerical semigroup.
And we write t(g, h) for the number of numerical semigroups of genus g with h
effective generators. We can then write

N(g) =
∑
h

t(g − 1, h)h.

From a dual point of view, we want to know how many S ∈ Ng are of the
form S = S′ − {m(S′)} for some S′ ∈ Ng−1. Well for x ∈ Sc, when do we have
S ∪ {x} a numerical semigroup? If there is an s ∈ S so that s + x ∈ Sc, then
we run into a problem. Call a gap x fragile if x 6= 1 and for all s ∈ S, we have
x+ s ∈ S. Then

S ∪ {x} is a numerical semigroup of genus g − 1 ⇔ x is fragile

Let’s define h(S) to be the number of fragile gaps in Sc and t(g, h) to be the
number of numerical semigroups of genus g with h(S) = h. Let’s see how these
two concepts interact.
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Looking at complements, it makes h(S) very clear, it’s the number of el-
ements x ∈ Sc so that Sc − {x} is the complement of an earlier numerical
semigroups. In general, S being a numerical semigroup means Sc satisfies the
following property:

x ∈ Sc =⇒ d ∈ Sc for all d|x

In other words, if S is a numerical semigroup, then Sc is closed under taking
divisors. Call the gaps that are not divisors of any other gaps the maximal gaps
of S.

Then it’s immediate that x fragile =⇒ x maximal gap, since any non-
maximal gap will have a multiple of itself as a gap. The converse is not neces-
sarily true - For example, in {1, 2, 5}c, the maximal divisors are 2 and 5, but 2
isn’t fragile since 2 + 3 = 5 is a gap.

23 A Fresh Start 2
Sometimes I get a bit overwhelmed with information and it’s nice to start fresh
and copy all the important bits discovered in the last section to the same spot.
Throughout, S is a numerical semigroup of genus g and S′ is a numerical semi-
group of genus g − 1.

• Definitions

1. An element x of S is irreducible if it cannot be written as x = s1 +s2
for two elements s1, s2 ∈ S.

2. An element y of Sc is fragile if y 6= 1 and s+y ∈ S for all s ∈ S∪{y}.
3. Given a minimum generating set A of S, the effective generators of
S are the elements of A bigger than F (S).

4. The number of effective generators of S is denoted h(S), and the
number of numerical semigroups of genus g with h effective generators
is denoted t(g, h), so

N(g) =
∑
h

t(g − 1, h)h

5. The removable gaps are the fragile gaps of S that are smaller than
m(S).

6. The number of removable gaps of S is denoted h(S), and the number
of numerical semigroups of genus g with h removable gaps is denoted
t(g, h), so

N(g − 1) =
∑
h

t(g, h)h

• Consequences

1. S − {x} ∈ Ng+1 ⇐⇒ x is irreducible.
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2. S ∪ {x} ∈ Ng−1 ⇐⇒ x is a fragile gap.
3. S′ ∈ Ng−1 is of the form S′ = S ∪ {F (S)} ⇐⇒ S = S′ − {x} for

an effective generator x
4. S ∈ Ng is of the form S = S′ − {m(S′)} ⇐⇒ S′ = S ∪ {x} for a

removable gap x.

• Proofs

1. S−{x} ∈ Ng+1 means there does not exist s1, s2 ∈ S so that s1+s2 =
x. So x irreducible. Other direction the same.

2. S ∪ {x} ∈ Ng−1 means s+ x ∈ S for all s ∈ S ∪ {x}, so x is a fragile
gap. Other direction the same

3. If S′ = S ∪ {F (S)}, then F (S′) < F (S), so whatever element x we
removed from S′ must have been bigger than F (S), and therefore
is an effective generator. In the other direction, if S = S′ − {x}
for an effective generator x, then x is irreducible and x > F (S′), so
x = F (s).

4. If S = S′ − {m(S′)}, then m(S) > m(S′), so whatever element we
add to S has to be less than m(S), so it is a removable gap. In the
other direction, if S′ = S ∪ {x} for a removable gap, then x is fragile
and x > m(S), so m(S′) = x.

Let’s see what a few of these N(g) decompositions look like. First, we’ll
collect a bunch of data.

S (1) (2, 3) (3, 4, 5) (2, 5) (4, 5, 6, 7) (3, 5, 7) (3, 4) (2, 7)
Sc {} {1} {1, 2} {1, 3} {1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 5}
h(S) 1 2 3 1 4 2 0 1
h(S) 0 0 1 0 2 0 0 0

S (5, 6, 7, 8, 9) (4, 6, 7, 9) (4, 5, 7) (4, 5, 6) (3, 7, 8) (3, 5) (2, 9)
Sc {1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 3, 6} {1, 2, 3, 7} {1, 2, 4, 5} {1, 2, 4, 7} {1, 3, 5, 7}
h(S) 5 3 1 0 2 0 1
h(S) 2 2 0 0 0 0 0
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5 0 0 0 0 0 0
4 0 0 0 0 0 0
3 0 0 0 0 0 1
2 0 0 0 1 2 1
1 0 0 1 0 0 2
0 1 1 1 3 5 8
h

t(g, h)
g 0 1 2 3 4 5 6

t(g, h)
h

0 0 0 1 1 2
1 1 0 1 1 2
2 0 1 0 1 1
3 0 0 1 0 1
4 0 0 0 1 0
5 0 0 0 0 1

We’ll format the sums like so, starting with g = 1.∑
h

t(g − 1, h)h = N(g) =
∑
h

t(g + 1, h)h

(0)0 + (1)1 =1 = (1)0 + (1)1
(0)0 + (0)1 =2 = (3)0 + (2)1

(1)0 + (1)1 + (0)2 + (1)3 =4 = (5)0 + (0)1 + (2)2
(1)0 + (1)1 + (1)2 + (0)3 + (1)4 =7 = (8)0 + (2)1 + (1)2 + (1)3
This feels like a nice connection between Ng−1,Ng, and Ng+1. For example,

if N(g) < N(g − 1), then∑
h

t(g + 1, h)h <
∑
h

t(g, h)h,

And of course, h and h are just two placeholders for an integer n, so we can
rewrite this as ∑

n

t(g + 1, n)n <
∑
n

t(g, n)n

m∑
n

[
t(g + 1, n)− t(g, n)

]
n < 0
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Note that t(g − 1, n) = 0 for n ≥ g since the ordinary semigroup Og−1 =
(g, . . . , 2g− 3) maximizes the number of effective divisors for a fixed g, and this
is all g − 1 of them.

On the other hand, maximizing h(S) comes from having lots of gaps below
m(S). So Og+1 with all its gaps below m(S) will maximize this value.

Proposition 7
h(Og) =

⌈g
2

⌉
Proof 12 If S = Og − {x} is a numerical semigroup, then x is a removable
gap of Og, which means it is fragile, so s + x ∈ Og for all sOg ∪ {x}. But if
s ∈ Og, then this is clearly true for any x. So the condition comes down to
whether x+ x ∈ Og. Then

h(Og) = |{x ≤ g | 2x > g}| =
⌈g

2

⌉
Looking back at the original inequality∑

n

[
t(g + 1, n)− t(g − 1, n)

]
n < 0

This looks like something ripe for generating functions, so let’s define

T (x, y) =
∑
n≥0

∑
g≥0

t(g, n)xnyg

Then
x

y

∂

∂x
T (x, y) =

∑
n≥0

∑
g≥−1

t(g, n)nxnyg+1 =
∑
n≥0

∑
g≥0

t(g − 1, n)xnyg

yx
∂

∂x
T (x, y) =

∑
n≥0

∑
g≥1

t(g, n)nxnyg−1 =
∑
n≥0

∑
g≥0

t(g + 1, n)nxnyg

And this means

yx
∂

∂x
T (x, y)− x

y

∂

∂x
T (x, y) =

∑
n≥0

∑
g≥0

[
t(g + 1, n)− t(g − 1, n)

]
nxnyg

Let’s write
C(g) =

∑
n

[
t(g + 1, n)− t(g − 1, n)

]
n

As a reminder, we have

N(g) < N(g − 1)⇒ C(g) < 0

Then setting x = 1 gives(
y − 1

y

)
∂

∂x
T (x, y)

∣∣∣∣
x=1

=
∑
g≥0

C(g)yg
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Let’s compute a few of these terms.

C(0) = [t(1, 0)− t(−1, 0)]0

= 0

C(1) = [t(2, 0)− t(0, 0)]0 + [t(2, 1)− t(0, 1)]1

= [1− 1]0 + [1− 0]1

= 1

C(2) = [t(3, 0)− t(1, 0)]0 + [t(3, 1)− t(1, 1)]1 + [t(3, 2)− t(1, 2)]2

= [3− 1]0 + [0− 0]1 + [1− 0]2

= 2

C(3) = [t(4, 0)− t(2, 0)]0 + [t(4, 1)− t(2, 1)]1 + [t(4, 2)− t(2, 2)]2

= [5− 1]0 + [0− 1]1 + [2− 0]2

= 3

Let’s take a look at that last one. We finally got a negative term: [t(4, 1) −
t(2, 1)]1 = −1, but the the next compensates for it.

C(4) = [t(5, 0)−t(3, 0)]0+[t(5, 1)−t(3, 1)]1+[t(5, 2)−t(3, 2)]2+[t(5, 3)−t(3, 3)]3

= [8− 3]0 + [2− 0]1 + [1− 1]2 + [1− 0]3

= 5

Let’s compute the necessary values for g = 6 so we can calculate C(5). And
eventually, we’ll just write up some code. I’ve been struggling a ton getting
the GAP interface to work through SageMath, but The Combinatorial Object
Server is a savior for generating numerical semigroups!

Sc {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 7} {1, 2, 3, 4, 5, 8} {1, 2, 3, 4, 5, 9} {1, 2, 3, 4, 5, 10} {1, 2, 3, 4, 5, 11} {1, 2, 3, 4, 6, 7} {1, 2, 3, 4, 6, 8}
h(S) 3 3 2 2 0 0 1 0

Sc {1, 2, 3, 4, 6, 9} {1, 2, 3, 4, 6, 11} {1, 2, 3, 4, 7, 8} {1, 2, 3, 4, 7, 9} {1, 2, 3, 4, 8, 9} {1, 2, 3, 5, 6, 7} {1, 2, 3, 5, 6, 9} {1, 2, 3, 5, 6, 10}
h(S) 0 0 0 0 0 0 0 0

Sc {1, 2, 3, 5, 7, 9} {1, 2, 3, 5, 7, 11} {1, 2, 3, 6, 7, 11} {1, 2, 4, 5, 7, 8} {1, 2, 4, 5, 7, 10} {1, 2, 4, 5, 8, 11} {1, 3, 5, 7, 9, 11}
h(S) 1 0 0 0 0 0 0

so
t(6, 0) = 17 t(6, 1) = 2

t(6, 2) = 2 t(6, 3) = 2

and

C(5) = [t(6, 0)−t(4, 0)]0+[t(6, 1)−t(4, 1)]1+[t(6, 2)−t(4, 2)]2+[t(6, 3)−t(4, 3)]3

= [17− 5]0 + [2− 0]1 + [2− 2]2 + [2− 0]3
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= 8

And for g = 7, we have

t(7, 0) = 26 t(7, 1) = 6

t(7, 2) = 5 t(7, 3) = 1

t(7, 4) = 1

and

C(6) = [t(7, 0)− t(5, 0)]0 + [t(7, 1)− t(5, 1)]1 + · · ·+ [t(7, 4)− t(5, 4)]4

= [26− 8]0 + [6− 2]1 + [5− 1]2 + [1− 1]3 + [1− 0]4

= 12

If we get anything for T (x, y), we can use that to maybe make more sense of
these coefficients.

T (x, y) =
∑
n≥0

∑
g≥0

t(g, n)xnyg

Recall that h(S) is maximized when S = Og = {1, 2, . . . , g}c, which gives
h(Og) = dg/2e , so we can rewrite the sum with n dependent on g:

T (x, y) =
∑
g≥0

dg/2e∑
n=0

t(g, n)xnyg

So

T (1, y) =
∑
g≥0

dg/2e∑
n=0

t(g, n)

 yg = T (1, y) =
∑
g≥0

N(g)yg

A natural question is what T (x, 1) is? For an example of such values being
significant, the Tutte polynomial of a graph is a 2-variable polynomial associated
to a graph that encodes massive amounts of information. I will write FG(x, y)
for this polynomial instead of T , to avoid confusion when we return to the
discussion above. Although it can be defined in various ways, one is in terms of
connected components of G when removing sets of edges. If k(A) is the number
of components of G−A, then

FG(x, y) =
∑
A⊂E

(x− 1)k(E)−k(A)(y − 1)k(A)+|A|−|V |

Then a few specializations give

• FG(x, y) encodes the chromatic polynomial χG(x) by

(−1)|V |−k(G)xk(G)FG(1− x, 0) = χG(x)
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• As a result of the beautiful connection that χG(−1) counts the number of
Acyclic Orientations of G, we can also get this from FG(x, y) by looking
at FG(2, 0).

• FG(1, 1) counts the number of spanning trees in G. This is also the size
of the critical group K(G).

• FG(2, 2) = 2|E|.

• Along the hyperbola xy = 1, FG(x, y) is the Jone’s polynomial of the
associated alternating knot.

So going back to T (x, y), we have T (1, y) the generating function for N(g),
and

T (x, 1) =
∑
n≥0

∑
g≥0

t(g, n)

xn

and the inner sum is infinite. For example, when n = 0, we get

1 + 1 + 1 + 3 + 5 + 8 + . . .

T (x, y) =
∑
n≥0

∑
g≥0

t(g, n)xnyg

...what to do?
Well suppose S is a numerical semigroup of genus g with n removable gaps.

Then removing one of those gaps gives another numerical semigroup S′ of genus
g − 1, and how many removable gaps does S′ have? Write S′ = S ∪ {x}.

If y is a removable gap of S, then first, y < m(S). Removing such a gap
doesn’t decrease multiplicity, so m(S) = m(S′), so we have y < m(S′). Second,
y is fragile in S, meaning for all s ∈ S ∪ {y}, we have s + y ∈ S. So the only
way we’d have s′ + y 6∈ S′ for s′ ∈ S′ is if s′ = x. This means

y is fragile in S ∪ {x} ⇔ x+ y ∈ S

So h(S′) = |{y < m(S) | x+ y ∈ S}| − 1.
Ok, I can’t lie, I’m definitely looking towards constructing some graphs! The

equivalence is symmetric, so it seems only natural: let T (S) be the graph with

V = {removable gaps of S}

E = {(x, y) | x+ y ∈ S}

Before I code this up and post some examples, I wanted to record a couple facts.

1. The number of vertices of T (S) is h(S).

2. The degree of x ∈ V is h(S ∪ {x}).
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3. By the handshaking lemma, the number of edges is

1
2

∑
x removable
gap of S

h(S ∪ {x})

For example, if S = {1, 2, 3, 4, 5}c, then the sum is

h({1, 2, 3, 4}) + h({1, 2, 3, 5}) + h({1, 2, 4, 5}) = 2 + 2 + 0 = 4

Notice that the value is equal to N(3). For S = {1, 2, 3, 4, 5, 6}c, we get

h({1, 2, 3, 4, 5}) + h({1, 2, 3, 4, 6}) + h({1, 2, 3, 5, 6}) = 3 + 1 + 2 = 6

Which is N(4) − 1. The one we missed was {1, 3, 5, 7}, since that only
comes from removing 2 from {1, 2, 3, 5, 7}, and that set cannot be obtained
by removing a removable divisor from O6.

LetN x
g be the numerical semigroups of genus g with x as a removable gap and

let ρx : N x
g → Ng−1 given by ρx(S) = S ∪ {x}. Suppose that ρx(S1) = ρx(S2).

Then S1 ∪ {x} = S2 ∪ {x}, so S1 = S2. Therefore, this map is injective. Which
shows for all x,

|N x
g | ≤ N(g − 1)

WILL CONTINUE

24 Duality
I started the graph idea with this idea of “duality” between effective generators
and removable gaps, in the sense that they are exactly the elements that can
be added and removed from a numerical semigroup to produce another numer-
ical semigroup to invert the operations of removing multiplicities and adding
Frobenius numbers.

Alternating the operations of adding Frobs and removing mults for a nu-
merical semigroup S of genus g will always stabilize on Og, and gives a path
from S to Og alternating with sets S′ ∈ Ng−1. Therefore, starting from Og, we
should be able to produce every S ∈ Ng by alternating adding removable gaps
and removing effective divisors.

So one numerical semigroup S gives us ON(S) − 1 other numerical semi-
groups of genus g and g− 1. But as soon as we choose another S, we might not
get totally distinct numerical semigroups. Understanding this underlap is key
to understanding which side is larger.
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{1, 2, 3, 4}

{1, 2, 3, 5}

{1, 2, 3, 6}

{1, 2, 3, 7}

{1, 2, 4, 5}

{1, 2, 4, 7}

{1, 3, 5, 7}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 6}

{1, 2, 3, 4, 7}

{1, 2, 3, 4, 8}

{1, 2, 3, 4, 9}

{1, 2, 3, 5, 6}

{1, 2, 3, 5, 7}

{1, 2, 3, 5, 9}

{1, 2, 3, 6, 7}

{1, 2, 4, 5, 7}

{1, 2, 4, 5, 8}

{1, 3, 5, 7, 9}

Figure 43: Step 0

{1, 2, 3, 4}

{1, 2, 3, 5}

{1, 2, 3, 6}

{1, 2, 3, 7}

{1, 2, 4, 5}

{1, 2, 4, 7}

{1, 3, 5, 7}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 6}

{1, 2, 3, 4, 7}

{1, 2, 3, 4, 8}

{1, 2, 3, 4, 9}

{1, 2, 3, 5, 6}

{1, 2, 3, 5, 7}

{1, 2, 3, 5, 9}

{1, 2, 3, 6, 7}

{1, 2, 4, 5, 7}

{1, 2, 4, 5, 8}

{1, 3, 5, 7, 9}

Figure 44: Step 1

{1, 2, 3, 4}

{1, 2, 3, 5}

{1, 2, 3, 6}

{1, 2, 3, 7}

{1, 2, 4, 5}

{1, 2, 4, 7}

{1, 3, 5, 7}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 6}

{1, 2, 3, 4, 7}

{1, 2, 3, 4, 8}

{1, 2, 3, 4, 9}

{1, 2, 3, 5, 6}

{1, 2, 3, 5, 7}

{1, 2, 3, 5, 9}

{1, 2, 3, 6, 7}

{1, 2, 4, 5, 7}

{1, 2, 4, 5, 8}

{1, 3, 5, 7, 9}

Figure 45: Step 2

{1, 2, 3, 4}

{1, 2, 3, 5}

{1, 2, 3, 6}

{1, 2, 3, 7}

{1, 2, 4, 5}

{1, 2, 4, 7}

{1, 3, 5, 7}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 6}

{1, 2, 3, 4, 7}

{1, 2, 3, 4, 8}

{1, 2, 3, 4, 9}

{1, 2, 3, 5, 6}

{1, 2, 3, 5, 7}

{1, 2, 3, 5, 9}

{1, 2, 3, 6, 7}

{1, 2, 4, 5, 7}

{1, 2, 4, 5, 8}

{1, 3, 5, 7, 9}

Figure 46: Step 3

{1, 2, 3, 4}

{1, 2, 3, 5}

{1, 2, 3, 6}

{1, 2, 3, 7}

{1, 2, 4, 5}

{1, 2, 4, 7}

{1, 3, 5, 7}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 6}

{1, 2, 3, 4, 7}

{1, 2, 3, 4, 8}

{1, 2, 3, 4, 9}

{1, 2, 3, 5, 6}

{1, 2, 3, 5, 7}

{1, 2, 3, 5, 9}

{1, 2, 3, 6, 7}

{1, 2, 4, 5, 7}

{1, 2, 4, 5, 8}

{1, 3, 5, 7, 9}

Figure 47: Step 4

The sum over removable gaps of S of h(S) was to characterize a relationship
between the three values N(g − 2), N(g − 1), N(g). I guess a more direct way
to understand the duality of these operations is to look at the two sums

U(S) =
∑

x removable
gap of S

h(S ∪ {x})

L(S) =
∑

x effective
generator of S

h(S − {x})

173



In essence, we look at all the ways to move from one side to the other, and then
all the ways to go back on a different colored edge. Actually defining the union
of these is so bulky, so thinking about it in terms of the graph Γg is much easier!

25 A New Document
This has gotten very long and takes awhile to compile, so I’m starting a fresh
document (Arithmetic Explorations 2), which will naturally reference back to
this document.
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