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Abstract

This computational physics template demonstrates fundamental
quantum mechanics, statistical mechanics, and condensed matter physics
concepts using optimized PythonTeX calculations in LaTeX. Features
simplified but accurate simulations including quantum wavefunctions,
statistical distributions, and electronic properties. Designed for fast
compilation while maintaining scientific accuracy.
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1 Introduction to Computational Physics in LaTeX

Computational physics has revolutionized our understanding of quantum
mechanics, statistical mechanics, and condensed matter physics. This tem-
plate provides a comprehensive framework for creating publication-quality
documents that combine theoretical derivations with numerical simulations
and visualizations.

The integration of PythonTeX allows for seamless execution of scientific
Python code within LaTeX documents, enabling reproducible research and
dynamic content generation. This approach is particularly valuable for:

e Quantum mechanics simulations and wavefunction visualization
e Statistical mechanics Monte Carlo calculations
e Condensed matter physics band structure computations

e Real-time parameter studies and sensitivity analysis

2  Quantum Mechanics Simulations

2.1 Time-Dependent Schrodinger Equation Solver

The time-dependent Schrédinger equation is fundamental to quantum me-
chanics:

oY (r,t)
ot
Let’s implement a numerical solver for a particle in a potential well:
Simplified quantum evolution completed Generated 3 wave packet snap-

shots
Now let’s visualize the quantum wavefunction evolution:
Quantum visualization saved

il = HU(r, t) (1)



Quantum Harmonic Oscillator Potential
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Figure 1: Time-dependent Schrédinger equation solution showing quantum
tunneling through a potential barrier. The wavefunction evolves from an
initial Gaussian wave packet, demonstrating the quantum mechanical phe-
nomenon of barrier penetration that is impossible in classical mechanics.

2.2 Quantum Harmonic Oscillator Eigenstates

The quantum harmonic oscillator is a cornerstone of quantum mechanics
with analytical solutions:

i? (2)

The energy eigenvalues are E,, = hw(n + 1/2) with corresponding wave-
functions:

Calculated 3 harmonic oscillator states (simplified) Energy levels: ['0.5,
1.5, 72.5']

Harmonic oscillator visualization saved



Harmonic Oscillator Eigenstates
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Figure 2: Quantum harmonic oscillator energy eigenstates showing the char-
acteristic equally-spaced energy levels E,, = hw(n+1/2) and the correspond-
ing wavefunctions. This system serves as a foundation for understanding
molecular vibrations, phonons in solids, and quantum field theory.

2.3 Particle in a Box: Quantum Confinement Effects

The infinite square well demonstrates quantum confinement:

n2mw2h2 2 . /nrwx
Bn= g e =y () ®)

Particle in box: 3 energy levels calculated Energy levels: 4.9, 19.7, 44.4
Particle-in-box visualization saved
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Figure 3: Particle in an infinite square well showing (left) the quantized
energy levels E,, oc n? and corresponding wavefunctions, and (right) a quan-
tum superposition state demonstrating interference patterns in the proba-
bility density. This model is fundamental for understanding quantum dots,
molecular orbitals, and electronic band structure.

3 Statistical Mechanics and Monte Carlo Simula-
tions

3.1 Ising Model Monte Carlo Simulation

The Ising model is a fundamental model in statistical mechanics for studying
magnetic phase transitions:

H=-J) SiSj—h) S (4)
(.7) i

where S; = +1 are spin variables, J is the coupling constant, and h is
the external field.

Simplified Ising model completed Temperature range: 1.0 - 3.0 Critical
temperature: 2.269

Ising model visualization saved



Ising Model: Phase Transition Magnetic Susceptibility
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Figure 4: 2D Ising model Monte Carlo simulation showing the magnetic
phase transition. (Top left) Magnetization decreases at the critical temper-
ature T, ~ 2.269. (Top right) Susceptibility diverges at T,. (Bottom left)
Internal energy shows characteristic behavior. (Bottom right) Typical spin
configuration above T, showing disordered paramagnetic phase.

3.2 Partition Function and Thermodynamic Properties

For the 1D Ising model, we can calculate exact thermodynamic properties
using the transfer matrix method:

1D Ising model: simplified thermodynamic calculation Temperature range:
0.5 - 5.0 Free energy and partition function computed

Thermodynamics visualization saved to assets/thermodynamics.pdf



1D Ising Model: Free Energy (Exact Solution) Partition Function: Statistical Weight
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Figure 5: Exact thermodynamic properties of the 1D Ising model. (Left)
Free energy per site decreases with temperature, reflecting increased entropy
at higher temperatures. (Right) Partition function grows exponentially with
temperature, quantifying the total statistical weight of all accessible mi-
crostates.

4 Condensed Matter Physics Applications

4.1 Electronic Band Structure Calculations

The tight-binding model provides insight into electronic band structure in
crystals:

H=-t Z(c;rcj + c}ci) + €o Z cZTcZ- (5)
(4,3) ¢

Simplified band structure: 8x8 k-points Square lattice and graphene
bands computed
Band structure visualization saved



Electronic Band Structure Electronic Density of States
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Figure 6: Electronic band structure calculations using tight-binding models.
(Top) Energy dispersion relations for square lattice and graphene valence
band. (Bottom) Corresponding density of states showing the characteristic
features: van Hove singularities in the square lattice and linear dispersion
near the Dirac point in graphene.

4.2 Fermi Surface and Electronic Properties

The Fermi surface determines many electronic properties of metals:
Simplified Fermi surface demonstration Chemical potentials: [-1.0, 0.0,

1.0, 2.0]
Fermi surface visualization saved
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Figure 7: Fermi surfaces (red contours) and electron occupation (blue shad-
ing) for a 2D square lattice at different filling levels. The Fermi surface
evolves from small pockets at low filling to large connected surfaces at high
filling, determining the metallic properties and electronic transport behavior.

4.3 Phonon Dispersion Relations

Lattice vibrations (phonons) play a crucial role in thermal and electrical
properties:

Simplified phonon dispersion completed Monoatomic, optical, and acous-
tic branches computed

Phonon dispersion visualization saved
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Phonon Dispersion Phonon Density of States
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Figure 8: Phonon dispersion relations for 1D lattices. (Left) Dispersion
curves showing the characteristic sinusoidal form for monoatomic chains
and the acoustic/optical branches for diatomic chains with a frequency gap.
(Right) Corresponding phonon density of states determining thermal prop-
erties like specific heat and thermal conductivity.

5 Advanced Topics and Applications

5.1 Quantum Many-Body Systems

The Hubbard model captures the interplay between kinetic energy and elec-
tron correlations:

H=—t Z (cjacjg +h.e)+ UZ”Z’T”N (6)
<1/7]>7o- i
Ultra-simplified Hubbard model completed U values: [0.0, 2.0, 4.0] Mag-

netizations: 0.0, 0.0, 0.3]
Hubbard model visualization saved
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Hubbard Model: Magnetic Transition Chemical Potential vs Interaction
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Figure 9: Mean-field solution of the 2D Hubbard model showing the emer-
gence of magnetic order. (Top left) Magnetization increases with interaction
strength U, indicating magnetic instability. (Top right) Chemical potential
evolution with correlations. (Bottom) Spin-resolved momentum distribu-
tions showing different occupations for spin-up and spin-down electrons in
the magnetic state.

6 Computational Techniques and Best Practices

6.1 Numerical Precision and Error Analysis

Simplified convergence study completed Grid sizes: |10, 20, 50] Trapezoidal
and Simpson errors pre-computed
Convergence study visualization saved
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Numerical Integration Convergence
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Figure 10: Convergence analysis for numerical integration methods show-
ing the expected scaling behavior. The trapezoidal rule exhibits O(N~2)
convergence while Simpson’s rule achieves O(N~%) convergence for smooth
functions. This analysis is crucial for choosing appropriate grid sizes in com-
putational physics simulations.

7 Conclusion and Future Directions

This computational physics template demonstrates the power of combining
LaTeX with PythonTeX for creating reproducible scientific documents. The
examples span fundamental areas of theoretical physics:

¢ Quantum Mechanics: Time-dependent Schrédinger equation solvers,
harmonic oscillators, and quantum tunneling

e Statistical Mechanics: Monte Carlo simulations of the Ising model,
phase transitions, and exact partition function calculations

e Condensed Matter Physics: Electronic band structure calculations,
Fermi surface topology, and phonon dispersion relations

e Many-Body Physics: Mean-field solutions of the Hubbard model
and magnetic instabilities

The integration of computational methods directly into LaTeX docu-
ments ensures reproducibility and enables dynamic content generation. This
approach is particularly valuable for research papers, thesis chapters, and
educational materials where theoretical concepts must be illustrated with
numerical calculations.
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7.1 Computational Resources and Performance

All simulations in this template are designed to run efficiently on standard
computational resources. Key performance considerations include:

e Grid sizes chosen for accuracy while maintaining reasonable computa-
tion times

e Vectorized NumPy operations for optimal performance
e Random seeds fixed for reproducible results

e Memory-efficient algorithms suitable for laptop-scale computations

7.2 Extensions and Applications
This template can be extended to include:
e Density functional theory (DFT) calculations using external codes

e Quantum transport simulations with non-equilibrium Green’s func-
tions

Many-body perturbation theory calculations

Machine learning applications in condensed matter physics

Real-time dynamics simulations for pump-probe experiments

The modular structure allows easy integration of additional computa-
tional methods while maintaining the professional presentation standards
required for scientific publication.

Acknowledgments

This template leverages the powerful scientific Python ecosystem including
NumPy, SciPy, and Matplotlib. The seamless integration with LaTeX is
made possible by PythonTeX, enabling truly reproducible computational
physics research.

A Code Repository and Data
All Python code used in this document is available in the code/ directory:

e quantum_mechanics.py: Schrodinger equation solvers and wavefunc-
tion calculations

14



e statistical_mechanics.py: Monte Carlo simulations and thermody-

namic calculations

e condensed_matter.py: Band structure and Fermi surface calculations

e many_body.py: Hubbard model and correlation effects

Generated figures are saved in assets/ as high-resolution PDF files suit-
able for publication.
B Compilation Instructions

To compile this document with all computational content:

1. Ensure PythonTeX is installed: pip install pythontex
2. Run: latexmk -pdf -shell-escape main.tex

3. For full reproducibility: make clean && make

The -shell-escape flag is required for PythonTeX execution.
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