MATH 314 Fall 2023 - Class Notes

3/27/2024

Devyn Mason

SAES Encryption Demo

In this example, we have a plaintext of 1010 1110 0111 0001 and a k of 1110 1101 0010 0110

Additionally, $w_0 = 11101101$ and $w_1 = 00100110$

- First we calculate $g(w_1)$ by splitting up w_1 into bits of 4:
- This gives us blocks of 0010 and 0110. We then swap their positions so 0110 is on the left, and 0010 is on the right.
- Then, feed both sides through the SBOX and change to your output. By feeding the left side through the SBOX, we get 1000 and 1010 on the right.
- In $g(w_1)$, the right side stays the same while the left side is added to its corresponding polynomial for the round. Since this is the first round, we add polynomial x^3 to 1000.
- 1000 is to convert to the polynomial $x^3 + 0x^2 + 0x + 0$. Each power has the coefficient of its corresponding bit. So if we then add X^3 to this, we get 0000. So finally, $g(w_1) = 00001010$.
- We can now find w₂. This is done by xoring between w₀ and $g(w_1)$. This gives us 1110 1101 $+$ 0000 1010 = w₂ = 11100111.
- To find w₃, we have to xor w₂ with w₁. This gives us 1100 0001 for w₃.
- We are then required to calculate $g(w_3)$. This is done by doing the same process to find $g(w_1)$. After doing this process, we get a value of 0111 1100. To find w₄ we xor $g(w_3)$ with w_2 and get 1001 1011. To find w_5 we xor that value with w_3 and get 0101 1010.
- All these calculations are necessary because they give us our keys. There are as follows: $k_1 =$ $\left(\begin{array}{cc} 1110 & 0111 \\ 1100 & 0001 \end{array}\right) k_2 =$ $\left(\begin{array}{cc} 1001 & 1011 \\ 0101 & 1010 \end{array}\right)$
- We then want to xor roundkey 0 with the plaintext and run that value through the SBOX. This gives us 1010 1110 0111 0001 + 1110 1101 0010 0110 = 0100 0011 0101 0111. After running this through the SBOX, we get 1101 1011 0001 0101.
- We must then conver this to polynomials and insert those ploynomials into a hill cipher as follows: $\begin{pmatrix} x^3 + x^2 + 1 & 1 \\ -3 & 1 & 1 \end{pmatrix}$ $x^3 + x^2 + 1 \quad 1 \ x^3 + x + 1 \quad x^2 + 1$ We then perform the shift rows step: $\begin{pmatrix} x^3 + x^2 + 1 & 1 \ x^2 + 1 & x^3 + x^4 \end{pmatrix}$ $\begin{pmatrix} +x^2+1 & 1 \\ x^2+1 & x^3+x+1 \end{pmatrix}$
- We then must mix the columns. This is computing E × M. E is a constant. $\begin{pmatrix} 1 & x^2 \\ x^2 & 1 \end{pmatrix}$ x^2 1 \setminus ×
	- $\int x^3 + x^2 + 1$ 1 $\begin{pmatrix} +x^2+1 & 1 \\ x^2+1 & x^3+x+1 \end{pmatrix}$.
- We then get $\begin{pmatrix} (x^3 + x^2 + 1) + (x^4 + x^2) & 1 + x^5 + x^3 + x^2 \\ (x^5 + x^4 + x^2) & (x^2 + 1) & x^2 + x^3 + x^2 \end{pmatrix}$ $(x^3 + x^2 + 1) + (x^4 + x^2)$ $1 + x^5 + x^3 + x^2$
 $(x^5 + x^4 + x^2) + (x^2 + 1)$ $x^2 + x^3 + x + 1$
- To make it easier on ourselves we cancel like terms: $\begin{pmatrix} x^4 + x^3 + 1 & x^5 + x^3 + x^2 + 1 \\ x^5 + x^4 + 1 & x^3 + x^2 + x + 1 \end{pmatrix}$ $x^4 + x^3 + 1$ $x^5 + x^3 + x^2 + 1$
 $x^5 + x^4 + 1$ $x^3 + x^2 + x + 1$ Since this problem is in $x^4 + x + 1$, we divide each element by mod: $\begin{pmatrix} x^3 + x & x^3 + x + 1 \\ x^2 & x^3 + x^2 + x \end{pmatrix}$ $\begin{pmatrix} +x & x^3 + x + 1 \\ x^2 & x^3 + x^2 + x + 1 \end{pmatrix}$
- We then must convert our first key to polynomials and then add to our previous result: $\int x^3 + x \, x^3 + x + 1$ x^2 $x^3 + x + 1$
 x^2 $x^3 + x^2 + x + 1$ + $\int x^3 + x^2 + x x^3 + x^2$ $x^3 + x^2 + x \quad x^3 + x^2$ $\Big) =$
 $x^2 + x + 1$ 1 $\Big) =$ $\int x^2 + x + 1$ $x+1$ x^3+x^2+x \setminus
- We then covert the polynomials back to bits and get a cipher of: $\begin{pmatrix} 0100 & 0111 \\ 0011 & 1110 \end{pmatrix}$ After running this through the SBOX, we get $\begin{pmatrix} 1101 & 0101 \\ 1011 & 1111 \end{pmatrix}$
- We then shift rows again: $\begin{pmatrix} 1101 & 0101 \\ 1111 & 1011 \end{pmatrix}$
- We then must xor with our second round key: $\begin{pmatrix} 1101 & 0101 \\ 1111 & 1011 \end{pmatrix}$ + $\left(\begin{array}{cc} 1001 & 0101 \\ 1011 & 1010 \end{array}\right) =$ $\left(\begin{array}{cc} 0100 & 0000 \\ 0100 & 0001 \end{array}\right)$
- Finally, we get a CIPHERTEXT of: 0100 0100 0000 0001