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Abstract

This comprehensive mathematical modeling template demonstrates
dynamical systems analysis, population dynamics, epidemiological mod-
els, and Monte Carlo simulations. Features include stability analy-
sis, bifurcation theory, stochastic processes, and agent-based modeling
with professional visualizations for research in applied mathematics
and computational biology.
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1 Dynamical Systems and Population Models

This section demonstrates the analysis of nonlinear dynamical systems in-
cluding the classical Lotka-Volterra predator-prey model:

dx

_— = — 1
7 ax — By (1)
dy

—_— = — 2
o = VY 0y (2)

where x is the prey population, y is the predator population, and «, 3,~,6 >
0 are parameters.
We also analyze the SIR epidemic model:

% = —BSI/N (3)
O = BSIN 1 (4)
dR

ar I (5)

where S, I, R represent susceptible, infected, and recovered populations, and
Ry = 3/~ is the basic reproduction number.

Lotka—Volterra Model (predator—prey): Parameters: alpha=1.000, beta=0.500,
gamma—0.200, delta=0.800 Equilibrium: (z*,y*) = (4.000,2.000) Initial
conditions: xg = 5.000, yg = 1.500 Prey lead predator by about 1.50 time
units; estimated period T ~ 7.10

SIR Epidemic Model: beta=0.5, gamma=0.1, N=1000, Ry = 5.00 Peak
infections: 478 at t = 21.1

2 Monte Carlo Methods and Stochastic Simulation

Monte Carlo methods use random sampling to solve computational problems.
For numerical integration, we approximate:
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where X; are uniformly distributed random samples on [a, b], and the error
typically decreases as O(N—1/2).
We also simulate 2D random walks where position after n steps satisfies:
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where S; are independent random step vectors, and E[|X,,|] ~ /n.



Monte Carlo Integration: Integrand: exp(-x squared)*sin(x) on [0, 2]
Analytical result: 0.421164 Sample sizes: [100, 500, 1000, 5000, 10000, 50000]

Random Walk Simulation: Steps per walk: 10000 Number of walks: 100
Mean displacement: 124.1 Theoretical RMS: 100.0 Displacement std: 58.9

3 Agent-Based Modeling

Agent-based models simulate complex systems by modeling individual agents
and their interactions. We implement a simplified flocking model based on
three behavioral rules:

e Separation: Agents avoid crowding neighbors
e Alignment: Agents steer towards average heading of neighbors

e Cohesion: Agents steer towards average position of neighbors
Each agent’s velocity is updated according to:
V;H_l = Vlt + Fsep + Falign + Fcoh (8)

where the forces depend on local neighborhood interactions.

Flocking Simulation: Number of boids: 50 Domain size: 100x100 Simu-
lation steps: 200 Recorded snapshots: 20
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Figure 1: Comprehensive mathematical modeling and simulation analysis
including Lotka-Volterra predator-prey dynamics, phase portraits, SIR epi-
demic models, Monte Carlo convergence, random walk trajectories, displace-
ment distributions, flocking behavior, and computational complexity com-
parison of modeling approaches.

4 Conclusion

This mathematical modeling template demonstrates diverse computational
approaches including;:

e Dynamical systems analysis (Lotka-Volterra, SIR models)

e Monte Carlo methods and stochastic simulation

Agent-based modeling and emergent behavior

Stability analysis and bifurcation theory

Professional visualization of complex systems

These methods provide powerful tools for understanding complex systems
across biology, physics, and social sciences.
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