{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "# Algebra Revisited 2018\n", "## Modern Algebra: A Logical Approach, Book Two, \n", "## circa 1966 [Allen, Pearson]\n", "## Chapter 6: Functions and Other Relations\n", "\n", "# Bounded Functions \n", "\n", "p.325 (exercises 3, 5, 6) \n", "p.326 (exercise 8 proof)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "### (3) \n", "### M = {$(x, y)\\mid y = \\sqrt{x}\\; \\land\\; x\\in[0, \\infty)$}" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "b12488cef11af056eccd54a4f8e0dfde7cd280db" }, "output_type": "execute_result" } ], "source": [ "%display typeset\n", "x = var('x')\n", "f(x) = sqrt(x)\n", "domain = (x, 0, 1000)\n", "p = plot(f(x), domain)\n", "p.show(xmin=-10, xmax=50, ymin=-2, ymax=10)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Since $x \\ge 0,\\; f(x) \\ge 0$ \n", "Thus M is bounded below. \n", "However, M is not bounded above." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 2, "metadata": { }, "output_type": "execute_result" } ], "source": [ "limit(f(x), x=0, dir='+')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 3, "metadata": { }, "output_type": "execute_result" } ], "source": [ "limit(f(x), x=oo)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "$\\lim\\limits_{x \\to 0^+} \\sqrt{x} = 0$ \n", "$\\lim\\limits_{x \\to \\infty} \\sqrt{x} = \\infty$ \n", "### (5)\n", "### S = {$(x, y)\\mid y = \\frac{1}{x-4}\\; \\land\\; x\\gt 4$}" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "d38be1867e2d382ec0a33a4371bad8aa0f6e9bb9" }, "output_type": "execute_result" } ], "source": [ "%display typeset\n", "x = var('x')\n", "f(x) = 1/(x - 4)\n", "domain = (x, 4, 1000)\n", "p = plot(f(x), domain)\n", "p.show(xmin=0, xmax=10, ymin=-1, ymax=10)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Since $x \\gt 4,\\; f(x) \\gt 0$ \n", "Thus S is bounded below. \n", "However, S is not bounded above." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 5, "metadata": { }, "output_type": "execute_result" } ], "source": [ "limit(f(x), x=4, dir='+')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 6, "metadata": { }, "output_type": "execute_result" } ], "source": [ "limit(f(x), x=oo)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "$\\lim\\limits_{x \\to 4^+} \\frac{1}{x-4} = +\\infty$ \n", "$\\lim\\limits_{x \\to \\infty} \\frac{1}{x-4} = 0$" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "### (6)\n", "### T = {$(x, y)\\mid y = \\frac{1}{x^2+2}$} " ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "82e8fae0df79d38efb4f3ae7fb4ba5601feaa1c0" }, "output_type": "execute_result" } ], "source": [ "x = var('x')\n", "f(x) = 1/(x^2+2)\n", "p = plot(f(x), (x, -10, 10))\n", "p.show(xmin=-10, xmax=10, ymin=0, ymax=1)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "\n", "Since $x \\in \\mathbb{R} \\land x^2 \\ge 0$, the Absolute Maximum is $f(0) = \\frac{1}{2}$ \n", "$\\lim\\limits_{x \\to \\infty} \\frac{1}{x^2+2} = 0$ \n", "$\\lim\\limits_{x \\to -\\infty} \\frac{1}{x^2+2} = 0$ \n", "## (8) \n", "#### Given that F = {$(x,y) \\mid y = \\frac{2x}{x^2+1}$}, show that 1 is the absolute maximum of F. \n", "\n", "We will need to use Theorem 8-3 and it's corollaries.\n", "\n", "If $a,b \\in \\mathbb{R}$, \n", "then ($ab \\gt 0 \\longleftrightarrow$ a and b have like signs) \n", "and ($ab \\lt 0 \\longleftrightarrow$ a and b have opposite signs).\n", "\n", "Corollary 1: \n", "(1) If $a \\in \\mathbb{R}$, then $a^2 \\ge 0$ \n", "(2) If $a \\in \\mathbb{R} \\land a \\ne 0$, then $a^2 \\gt 0$ \n", "\n", "Proof: \n", "If a = 0, then 0*0 = 0 \n", "If a $\\ne 0$, then the two factors of a*a are the same and have the same sign. It follows from Theorem 8-3 that $a^2 \\gt 0$. \n", "\n", "Corollary 2: 1 > 0 and -1 < 0 \n", "Proof that 1 > 0 follows from the fact that 1 = 1*1. \n", "Then the proof that -1 < 0 follows from the Corollary to Theorem 5-3. \n", "Theorem 5-3: If $a, b \\in \\mathbb{R}$, then $a \\gt b \\longleftrightarrow a - b \\lt 0$ \n", "\n", "Corollary to Theorem 5-3: A real number is negative if and only if its opposite is positive, and a real number is negative if and only if its opposite is positive. $\\\\$\n", "\n", "Corollary 3: If $a \\in \\mathbb{R}$ and $a \\ne 0$, then a and $\\frac{1}{a}$ have like signs. $\\\\$\n", "\n", "To prove that 1 is the absolute maximum of F = {$(x,y) \\mid y = \\frac{2x}{x^2 + 1}$}, we need to prove \n", "(i) $\\frac{2x}{x^2 + 1} = 1$ is true when $x = 1$, and \n", "(ii) $\\frac{2x}{x^2 + 1} \\le 1$ is true. \n", "\n", "We know that $\\frac{2x}{x^2 + 1} \\le 1$ if $2x \\le x^2 + 1$, and that $2x \\le x^2 + 1$ is true if $0 \\le x^2 - 2x + 1 = (x-1)^2$. This suggests a proof of the statement, \"If $x \\in \\mathbb{R}$, then $\\frac{2x}{x^2+1} \\le 1$\" \n", "\n", "(1) $\\;$ $x \\in \\mathbb{R} \\longrightarrow (2)\\; (x-1) \\in \\mathbb{R} \\longrightarrow (3)\\; (x-1)^2 \\ge 0 \\longrightarrow (4)\\; x^2 - 2x + 1 \\ge 0 \\longrightarrow (5)\\; x^2 + 1 \\ge 2x \\longrightarrow (6)\\; 1 \\ge \\frac{2x}{x^2+1}$.\n", "$\\\\$ \n", "REASONS: \n", "(1)$\\;$ Given, (2)$\\;$ $\\mathbb{R}$ is closed under addition, (3)$\\;$ Theorem 8-3 Corollary 1, (4)$\\;$ Distributive property, (5)$\\;$ Addition property of inequality, (6)$\\;$ Multiplication property of inequality. \n", "\n", "\n", "NOTE: In step 6 we assumed that $\\frac{1}{x^2+1}$ was positive. This can be proved as follows: \n", "$\\\\$ \n", "(1)$\\;$ $x \\in \\mathbb{R} \\longrightarrow (2)\\; x^2 \\ge 0$, (3)$\\;$ $1 \\gt 0 \\longrightarrow (4)\\; x^2 + 1 \\gt 0 \\longrightarrow (5)\\; \\frac{1}{x^2+1} \\gt 0$. \n", "\n", "REASONS: (1)$\\;$ Given, (2)$\\;$ Theorem 8-3 Corollary 1, (3)$\\;$ Theorem 8-3 Corollary 2, (4)$\\;$ Addition propert of inequality, (5)$\\;$ Theorem 8-3 Corollary 3." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "820f56eebcc59edf87c0d15d1f5d4d21d1681830" }, "output_type": "execute_result" } ], "source": [ "x = var('x')\n", "f(x) = 2*x/(x^2+1)\n", "p = plot(f(x), (x, -10, 10))\n", "p.show(xmin=-10, xmax=10, ymin=-2, ymax=2)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ ] } ], "metadata": { "kernelspec": { "display_name": "SageMath (stable)", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 0 }