This is not an exhaustive review. In otherwords, this does NOT cover everything in Chapter 1 and there may be more (or less) of these concepts on your Unit I Exam.

1. Use the graph of $f(x)$ below to determine the requested values.

Figure 1: Graph of $f(x)$
(a) $\lim _{x \rightarrow-2^{-}} f(x)=$ \qquad (d) $\lim _{x \rightarrow 2^{+}} f(x)=$ \qquad (g) $f(-2)=$ \qquad
(b) $\lim _{x \rightarrow 0^{-}} f(x)=$
(e) $\lim _{x \rightarrow-\infty} f(x)=$
(h) $f(0)=$ \qquad
(c) $\lim _{x \rightarrow 0^{+}} f(x)=$ \qquad (f) $\lim _{x \rightarrow \infty} f(x)=$
(i) $f(2)=$ \qquad
(j) Does $f(x)$ have left-continuity, right-continuity, neither or both at $x=-2$?
(j) \qquad
(k) Does $f(x)$ have left-continuity, right-continuity, neither or both at $x=0$?
(k) \qquad
(l) Does $f(x)$ have left-continuity, right-continuity, neither or both at $x=2$?
(1) \qquad
(m) Complete the table by indicating the x-values for which $f(x)$ is discontinuous and identifying what type of discontinuity it has at that x-value.

x-value			
Discontinuity			

2. Write the following limits using the interval notation definition from Section 1.2 and the absolute value notation from Section 1.3.
(a) $\lim _{x \rightarrow 1}\left(2 x^{2}-4 x+3\right)=1$
\square
\square
(b) $\lim _{x \rightarrow 5^{+}}(\sqrt{x-5})=0$
\square
\square
(c) $\lim _{x \rightarrow 5^{+}}(\sqrt{x-5})=0$
\qquad
\qquad
(d) $\lim _{x \rightarrow 8}(3 x-11)=13$
\square
\square
3. Use an epsilon-delta proof to show that the following limits are true for any given ε.
(a) $\lim _{x \rightarrow 8}(3 x-11)=13$
\square
(b) $\lim _{x \rightarrow-3}(1-x)=4$
(c) $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}=-6$
4. For each of the following situations, draw a graph that meets the requirements. In each case, there are many possible answers.
(a) Draw $f(x)$ where $\lim _{x \rightarrow-5} f(x)=-2, f(-5)=1$, and $\lim _{x \rightarrow \infty} f(x)=4$.

Figure 2: Graph of $f(x)$
(b) Draw $g(x)$ where $\lim _{x \rightarrow-2^{+}} g(x)=-\infty, \lim _{x \rightarrow-2^{-}} g(x)=\infty, \lim _{x \rightarrow \infty} g(x)=0$, and $g(x)$ has a damped oscillation as x goes to infinity.

Figure 3: Graph of $g(x)$
(c) Draw $h(x)$ where $\lim _{x \rightarrow 2^{+}} h(x)=-1, \lim _{x \rightarrow 2^{-}} h(x)=1$, and $h(2)=4$.

Figure 4: Graph of $h(x)$
5. Calculate the requested limits.
(a) $\lim _{x \rightarrow 0} \frac{x^{2}-4 x+4}{x^{3}+5 x^{2}-14 x}$
(b) $\lim _{h \rightarrow 0} \frac{(h-2)^{3}+8}{h}$
(c) $\lim _{\theta \rightarrow 0} \frac{\cos (2 \theta)-1}{\sin (\theta)}$
[Hint: $\left.\cos (2 \theta)=1-2 \sin ^{2}(\theta)\right)$]
(d) $\lim _{x \rightarrow 0}(1+7 x)^{2 / x}$
(e) $\lim _{x \rightarrow \infty}\left(\ln \left(5 x^{2}\right)-\ln \left(2 x^{2}\right)\right)$
(f) $\lim _{y \rightarrow 0} \frac{\sin (3 y)}{5 y}$
(g) $\lim _{i \rightarrow \infty} \sum_{i=0}^{n} \frac{(-1)^{i}}{(2 i+1)!}$. Use Desmos to estimate the value.

