When $\nu=1$, all these coordinate systems cover the Poincaré patch of ${\rm AdS}_5$ spacetime.
%display latex
M = Manifold(5, 'M')
print M
For $\nu=1$, $M$ is nothing but the Poincaré patch of ${\rm AdS}_5$.
X1.<t,x,y1,y2,r> = M.chart(r't x y1:y_1 y2:y_2 r')
X1
var('nu', latex_name=r'\nu', domain='real')
g = M.lorentzian_metric('g')
g[0,0] = -exp(2*nu*r)
g[1,1] = exp(2*nu*r)
g[2,2] = exp(2*r)
g[3,3] = g[2,2]
g[4,4] = 1
g.display()
X2.<t,x,y1,y2,R> = M.chart(r't x y1:y_1 y2:y_2 R:\tilde{r}:(0,+oo)')
X2
X2_to_X1 = X2.transition_map(X1, [t, x, y1, y2, ln(R)])
X2_to_X1.display()
X2_to_X1.inverse().display()
g.display(X2.frame(), X2)
X3.<t,x,y1,y2,rho> = M.chart(r't x y1:y_1 y2:y_2 rho:\rho:(0,+oo)')
X3
X2_to_X3 = X2.transition_map(X3, [t, x, y1, y2, R^nu])
X2_to_X3.display()
X2_to_X3.set_inverse(t, x, y1, y2, rho^(1/nu), verbose=True)
X2_to_X3.inverse().display()
g.display(X3.frame(), X3)
X4.<t,x,y1,y2,z> = M.chart(r't x y1:y_1 y2:y_2 z:(0,+oo)')
X4
X3_to_X4 = X3.transition_map(X4, [t, x, y1, y2, 1/rho])
X3_to_X4.display()
X3_to_X4.inverse().display()
g.display(X4.frame(), X4)
When $\nu=1$, $(t,x,y_1,y_2,z)$ are the so-called Poincaré coordinates, i.e. the standard coordinates on the Poincaré patch of ${\rm AdS}_5$ spacetime.