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Kerr Black Holes

Astrophysical BHs are believed to be described by the Kerr metric:
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It has a curvature singularity at » = (0 and 6 = 7/2

It has two explicit symmetries (Killing vectors):

stationarity ( 0; ) and axi-symmetry ( 0, )
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BH Perturbations

BHs are not in isolation but are ‘perturbed’ by fields (scalar, fermion,
electromagnetic, gravitational...) due to neighbouring matter (eg,
accretion disk, neutron star, etc) or another BH

BH




Important question in order to ascertain whether a Kerr BH is
really the final stage of gravitational collapse of massive stars:

is Kerr spacetime stable under field perturbations?



Wave Equation

We consider linear field perturbations of a fixed BH (ie, we do not
consider the backreaction of the field on the BH) — the fields
propagate on a BH background g,

E.g., scalar field perturbations ¢ of a BH satisfy a wave eq. (2nd order
hyperbolic linear PDE)
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Perturbations by other fields satisfy a similar wave eq.



Eg, tor grav. field perturbations, linearize Einstein egs.

Smaller BH (m) moving on the
background metric g, of a massive
BH (M) causes perturbation metric /,,,

due to M

| o
Total metric = g,,,, + h,, + O (M)

perturbation (gravitational
waves) due to m

The eqs. satisfied by the different

Credit: NASA
components of 1, donot decouple, but...



Teukolsky’73 managed to decouple the egs. satisfied for
combinations ¢ of different components and derivatives of the
various fields (spin |s|=0 scalar, =1/2 neutrino, =1 emag for Faraday
tensor, =2 grav for Weyl tensor)

Teukolsky “master” PDE: OY(x) = Ts(x)

It's a wave-like eq.:
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Green Function

A crucial object is the retarded Green function
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Green Function

A crucial object is the retarded Green function
O G et (x,2") = 84(x,x") with causal b.c.:

Gret(x,2') =0 if 2’ #J (x)

GF determines evolution in time of any initial field configuration
(z) = / Grerl, 2% (&) + 0% (&) 0 Grea (1, 2') | d*F
t=0

GF can be calculated by separating (Carter’68) into Fourier modes
(+— stationarity) and spheroidal harmonics (+— axisymmetry & hidden
symmetry: Killing-Yano tensor) :

Crot =Y / A €7 Sy (0) S (0) G (1, 7)
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Y Fourier modes



The GF Fourier modes satisfy the radial Teukolsky eq.:

O, Gomew (T, 7") = 0(r,7")

|

2nd order linear operator in r
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separation const.: eigenvalue of angular ODE
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It can be trivially transtormed to a confluent Heun ODE: 2 regular
singular pts. at r = r & 1 irregular singular pt. at 7 = €




The GF of a 2nd order linear ODE can be found from two linearly
independent sIns. of the homogeneous radial ODE:
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Causal boundary conditions for the homogeneous sIns.:
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Superradiance

Wronskian condition (energy conservation):

2
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Superradiance: reflected wave has
more energy than incident wave if

w+-w<0

Field modes with those frequencies extract rotational energy from the BH
thanks to existence of ergosphere (region near BH where §, is spacelike)



Complex contour deformation

Instead of carrying out the Fourier integral along the real-Ww axis, it’s
useful to deform the contour of integration into complex-w plane

Then apply the residue th. to account for the singularities of the
Fourier modes (G,
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Mode solutions

Mode slns. correspond to frequencies wy.,, € C which are poles of
the GF modes
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Mode solutions

Mode slns. correspond to frequencies wy.,, € C which are poles of
the GF modes
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So they are zeros of the denominator: n=20,1,2,...
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Mode slns. are purely ingoing waves into the horizon and purely
ougoing at infinity
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Time dependence:

e—iwgmnt

l t — +0o0

{If Im(wemn) < 0: exponentially damped (quasinormal modes, QNMs)

If Im(wemn) > 0: exponentially growing (unstable modes)

[ If Im (wemn) = 0 : marginally unstable]



ONMs (Im(cugmn) < 0) of Kerr:
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The last stage (ringdown) of a gravitational waveform can be modelled
as perturbations of Kerr via QNMs:
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as perturbations of Kerr via QNMs:
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Q: Are there any unstable modes (Im(wemn) > 0) in Kerr?
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Some instabilities

e Kerr BH with event horizon removed by a “mirror” (may model
wormbholes) has unstable modes (Friedman’78)

Instability timescale ~ secs for massive wormholes (eg, Cardoso et al’08)

e BH ‘bomb’ (Press&Teukolsky’72):
Kerr BH unstable when surrounded

by a (sufficiently far) “mirror” mirror

e Kerr BH is unstable under massive field perturbations (Damour et
al’76)

Instability timescale has been used to constrain masses of fields, eg,
mass of Proca field < 4 X 10" %%eV (Pani et al’12)



What about Kerr (without mirror) under massless field perturbations?



Mode stability of Kerr

Consider a possible unstable mode ¢(x) = €"™¥ !¢, (r,0)

of the scalar wave eq. Multiply the eq. by ¢”, integrate over § and r
and take the Im part:
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Mode stability of Kerr

Consider a possible unstable mode ¢(x) = €"™¥ !¢, (r,0)

of the scalar wave eq. Multiply the eq. by ¢”, integrate over § and r
and take the Im part:

00 +1
/ dr/ d(cos6)
r4+ —1 L
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2Re(w)

r

r
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This equality requires: ) < Re(w) < |m|Q4
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i.e., unstable modes are only possible in this (superradiant) regime

NB: for a = 0 — {24 = 0: superradiant regime does not exist in
Schwarzschild (it has no ergosphere) and so it’'s mode-stable



Whiting’89 came up with a smart way: an injective integral transformation
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simple specific functions satisfies radial Teukolsky ODE
(has superradiance) O, R(r) — ()

satisfies a new radial ODE that has no superradiance (it corresponds to a
spacetime without ergosphere)



Whiting’89 came up with a smart way: an injective integral transformation

O
w@) = hi@) [ flra)e R
A Aj A
simple specific functions satisfies radial Teukolsky ODE
(has superradiance) O, R(r) — ()

satisfies a new radial ODE that has no superradiance (it corresponds to a
spacetime without ergosphere)

This allows to show it must be 4 = () if R is an unstable mode
injectivity

R=0

So there’re no unstable modes (nor marginally unstable, Shlapentokh-

Rothman’15) for massless general-spin fields in Kerr =>Kerr is mode-stable



Analogy (?) Kerr - SQCD

Aminov, Grassi & Hatsuda’20 noticed that the radial Teukolsky
operator can be rewritten as
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2 Kt

The ODE is symmetric under M1 <> M2 (but not under 71,2 <7 1M3)
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This ODE is the same as the quantum SU(2) Seiberg—Witten eq. with 3

fundamental hypermultiplets in supersymmetric quantum
chromodynamics (SQCD), where the m; are “flavour masses” of the

hypermultiplets

They conjectured that mode frequencies of radial Teukolsky eq. in Kerr are
equivalent to a Bohr-Sommerfeld-like rule for resonances in the SQCD

Since this rule in SQCD is manifestly symmetric under any m; <> m,

Vi, j € {1,2,3}
they conjectured that the mode sIn. condition in Kerr is also symmetric
under any exchange of SQCD masses

Casals & Teixeira da Costa’22 proved, directly in Kerr, this SQCD-mass
symmetry conjecture and used it to obtain an alternative proof of mode

stability as follows...



Kerr: “SQCD-mass” symmetries & mode stability

First rewrite the b.c. for mode sIns. in terms of the new ‘SQCD variables’:

—1(mi4+mo—1)In(z—1) in Pz
e ? ™~ Rﬁmw ~ €

r., — —00 r. — 00
(z — 1) (z = o0)

So the b.c. for mode slns., like the ODE, are symmetric under mq <+ mo
but not under mj 9 <> M3



Next express the ‘in’-sln. as a (Jaffé) expansion about r = 7‘+ (Leaver’85):
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Next express the ‘in’-sln. as a (Jaffé) expansion about r = 7‘+ (Leaver’85):

Rz’n 6p(z 1)62(m1—|—m2—|—2m3—1)1nz — 2 (mi1+mao—1)In(z— 1)Zb <Z—1)

: = z

b.c.cat r =11

with coeffs. satisfying a 3-term recurrence rin.
ot Vb, 1+ Vb, +al Vb, =

The coefficients o!*!) and «a(”) depend on M, a,w,?,m

oszl) are not symmetric under m;j o <> M3

The above expansion readily guarantees that R’" satisfies the ‘in’-sIn. b.c.
at r =14 (e, 2z =1)

In order to also satisfy the mode sIn. b.c. alsoat 7' = OC (2 = OQ)

we need for the infinite n-series to converge there



[t can be shown that requiring for the series to converge at 7 = 00 is

equivalent to the mode freqs. w = wy,,,,, satisfying a continued fraction eq.
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are invariant under any exchange i <> M with ¢,j € {1,2,3}
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Therefore, the mode freqs. wy,,,,, are also symmetric under m; < m,

Remember the SQCD masses:

mi=s—& 48 ma=& 46 my——s—& +&

W

g:::iZ% w:Ew—mQ:

m1 <> Mo is a trivial symmetry of the system

mq < ms corresponds to the mode spectrum being invariant under

S — —S (which follows from Teukolsky-Starobinsky differential ids.)

me <> msy corresponds to Whiting’s integral transformation

This thus provides a new, simpler (no need for integral nor differential
transformations!) proof of mode stability of (subextremal) Kerr BHs
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Stability of Extremal Kerr

All results so far were for subextremal Kerr. In extremal Kerr (a = M) :

- There’re no unstable modes in extremal Kerr [Teixeira da Costa’20
by extending Whiting’s integral transformation]

- But...transverse derivatives of axisymmetric field on the horizon grow!
| Aretakis’10] (growth undetermined)

- Derivatives on horizon for nonaxisymmetry are dominant and grow as
[Casals, Gralla & Zimmerman’16, due to a new BC at w = m{2]

(07 Gret)|qy ~ 0" 5712 as v — o0

- Such behaviour is due to an emergent
near-horizon conformal symmetry (AdS2)

of extremal BHs [Gralla & Zimmerman’18]
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Full linear stability of Kerr?

Note: the full linear sIn. of Teukolsky eq. is obtained from infinite
sums/integrals of frequency modes ) / T i
0om ¥ T

so non-existence of unstable modes does not guarantee full linear
stability

Kerr is fully (ie, not just modal) linearly stable under scalar
perturbations (Dafermos, Rodnianski & Shlapentokh-Rothman’16)

Open question: full linear stability of Kerr under gravitational
perturbations
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Kerr-de Sitter Black Holes

Kerr-de Sitter metric represents a rotating BH in a de Sitter Universe

(M, aa/T\)

Cosmological const.

[t's similar to the Kerr metric but with 3(+1) horizons:
event horizon

l

A = (r* +a®) (1 A;:Q) —2Mr:—%(r—r__)(r—r_)(r—r+)(r—rc)

T T

ro_ <0<r_<ry<r cosmological
o Cauchy horizon

horizon
Each horizon j=--, -, +, ¢ has

a

angular velocity 2 = T and surface gravity x;
J




Carter-Penrose diagram of Kerr-de Sitter

black hole

H T (future) cosmological horizon

(t = o0, 7 =7¢)



Perturbations of Kerr-de Sitter

Massless spin-field perturbations 1) of Kerr-de Sitter obey a Teukolsky
master PDE (similar to the one in Kerr)
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Perturbations of Kerr-de Sitter

Massless spin-field perturbations 1) of Kerr-de Sitter obey a Teukolsky
master PDE (similar to the one in Kerr)

Oy(x) = Ts()

Again, it separates by variables

Grev =3 [ o ™S 1 (8) S0 G (77
¢m ¥

and the GF modes obey a 2nd order linear, radial ODE (similar to the
one in Kerr)

@fr Gémw (7“, T/) — 5(T7 T/)

Casals & Teixeira da Costa’22 analyzed it, found mass symmetries and
used them to investigate the mode stability of Kerr-de Sitter as follows



"Mass” symmetries in Kerr-de Sitter

We expressed the radial Teukolsky operator in Kerr-de Sitter as

- > (4E—-1)za+1 1 1 )
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"Mass” symmetries in Kerr-de Sitter

We expressed the radial Teukolsky operator in Kerr-de Sitter as

Or=2(z—1)(2 —22)—5 + Zz(z — 1) ((ms3 +ma)* —1)—

: 2 (4F — 1)z +1 11
dz? 4 (z — 29)

msma(z — 2) (z _ 1)] _ z(zl_ ¥ [mlmg (Z-2)E-1+ i(z — 2o)((m1 4+ ma)? — 1)

2
where i _ ., Te—T- s
ZEZOO 29 — 200 oo =
T —T1r__ e —T—— ry+ —T_
r=(r—_,r_,r4,1c,00) ¢ 2 = (00,0, 1, 22, 00) E=EXA5r51)

and we now have four ‘'mass’ parameters:

mip =8 —§_ +&4 m3 = —s— & + &4 §j =15
ma = §— + &4 mg = §— — &4 + 2 w; =w —m);

The ODE is symmetric under 71 <7 12 or 73 <7 M4 (but not others)



The radial Teukolsky ODE in KdS in principle has 5 regular singular pts.
but it can be transformed into a Heun eq. with just 4 reqular singular pts.:

r=(r__,r_,ry,re) (7 = X is a removable singularity)

it’s not a confluent Heun eq. as the irregular sing. " = 00 in Kerr

has split into 2 regular sing. pts. here



Mode slns. in Kerr-de Sitter

B.c. for mode slns. (W = Wemn): purely
ingoing waves into the event horizon and
purely outgoing at the cosmological horizon

e—zw+r* ~ R’Ln ~ ezwcr*

mw
(r = ry) (7“ — TC)

dr, < a2A) (r? + a?)
= (14
dr

Re-expressed in the new variables:

o3 (mitmz—1)In(z—1) _, RE"’ ~ e 3(mstmas—1)In(z—2z2)
mw

z — 1 Z — 29
(r = 71) (r — re)

So the b.c. for mode slns., like the ODE, are symmetric under mj <> mgo
or M3 <7 M4 (but not others)



Instead of the Jaffé expansion about " — "+ which we used in Kerr for

Ry, we use an expansion in terms of confluent hypergeometric funcs.

z—1
R, Z by, 2 F1 (—n,n—kl—zzjf:lmj;l—ml — MN2; z2—1>

where the coefficients satisfy a 3-term recurrence rin.
oz,,(fl)bnﬂ + a,ff)bn + oz,fl_l)bn_l =0

and oz(il)and oz,flo) . like the ODE, are invariant under m1y <> Mo or

ms <= M4 (but not others)

Similarly to Kerr, the above expression corresponding to a mode sln. is
equivalent to the convergence of the seriesin 7 € [r1, ]



Convergence of the series corresponds to a continued fraction eq. :
(+1) (1)

0)
0=a'? 4
o +1) (-1
Oé(o) | —Ozg )O‘; )
1] 0) oD (=1
s | 2 3
where
2
1) (-1) _ n?(n —o1)? {0103 — 404+ (02 + (n—01)n) } . n(n — op) [01 (0905 — 0104) — a?ﬂ
foo1fn (01 — 2n)2[(01 — 2n)% — 1] (o1 — 2n)2[(01 — 2n)% — 1]
0 _ (03 — 40109 + 80307 N 2(4F 4+ 1)z + 2+ (20 + 1)(01 — 2n — 2)(01 — 2n) — 229[0% — 209)]
" 8(=24 01 —2n)(01 — 2n) 8(zy — 1)
4 4 4
01 = ij 09 —= H T ;T 03 = H mimjmk
7=1 1,J=1,571 i, J,k=1,k#j#1

4
Oyp = H m
j=1

are symmetric under any exchange i <> M with 4,7 € {1,2,3,4}



Therefore, the mode fregs. wy,,,,, are also symmetric under m; <+ m,



Therefore, the mode fregs. wy,,,,, are also symmetric under m; <+ m,

Using mo <> m3 we transformed to a radial ODE which allowed us to
exclude unstable modes from a subregion of the superradiant frequency

regime
w/m
0.4
0.3
- non-superradiant and

0.2 mode stable

01

— a/M

Open question: exclude unstable modes from the blue region so as to
prove the mode stability of Kerr-de Sitter



1. BH Perturbations

2. Stability properties of Kerr

3. Stability properties of Kerr-de Sitter

4. Conclusions



Conclusions

- Kerr: mode stability proven

Open question: prove full linear stability under grav. perturbations

- Kerr-de Sitter: only partial mode stability proven

Open question: complete proof of mode stability

Apart from the explicit (Killing) symmetries, Kerr harbours hidden
symmetries (Killing Yano, ‘SQCD mass’, near-horizon conformal
geometry, etc) which regularly surprise us and allow us to make
analytical progress on the understanding of astrophysical BHs

Mernei Aien./



