Chapter 4 Review

Theorem: Let S = {a1, …, am} be a set of vectors of n. Let A = [a1 … an] be a matrix and T : ℝm → ℝn be the linear transform defined by T(x) = Ax. Let B be an echelon form of A. Then the following objects are equal:



Example: Let T(x) = Ax, where A is

$\begin{bmatrix} 1 & 2 & 0 & 2 \\ -2 & -4 & 1 & -3 \\ 1 & 2 & 2 & 4 \end{bmatrix}$

and has reduce echelon form B given by

$\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Example: Answer all the same questions as above but for an invertible transform.

Example: Give an example of a linear transform T : ℝ3 → ℝ2 such that T(1, 1, 0) = (1, 0) and T(0, 1, 2) = (1, 2).