Chapter 4 Review

Theorem: Let $S = \{a_1, \ldots, a_m\}$ be a set of vectors of \mathbb{R}^n . Let $A = [a_1 \ldots a_n]$ be a matrix and $T : \mathbb{R}^m \to \mathbb{R}^n$ be the linear transform defined by T(x) = Ax. Let B be an echelon form of A. Then the following objects are equal:

- The set of vectors killed by T,
- $\{x : Ax = 0\}$ (this is the set of homogeneous solutions to A),
- null(A),
- $\{x: T(x) = 0\},\$
- $\ker(T)$,
- number of rows of all zeros in B,
- The set of vectors hit by T,
- $\{T(x): x \in \mathbb{R}^n\},$
- range(T),
- col(A),
- $\operatorname{span}(S)$,
 - ____
- $\dim(\operatorname{col}(A))$,
- $\dim(\operatorname{range}(T))$,
- $\dim(\operatorname{span}(S))$,
- m nullity(A) (rank-nullity theorem),
- $m \dim(\ker(T))$,
- $\dim(\text{row}(A))$, (think of this as maximal number of linear independent equations in Ax = 0),
- number of pivots in B,

Example: Let T(x) = Ax, where A is

$$\begin{bmatrix} 1 & 2 & 0 & 2 \\ -2 & -4 & 1 & -3 \\ 1 & 2 & 2 & 4 \end{bmatrix}$$

and has reduce echelon form B given by

$$\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- What is the range of T?
- What is the kernel of T?
- What is the row space of A?
- What is the rank of A?
- What is the nullity of A?
- Write the columns corresponding the free variables as a linear combination of the pivot columns.

- What is the general solution to Ax = 0?
- What is the general solution to $Ax = [2-3, 4]^t$?
- What is a vector not in the range of T?

Example: Answer all the same questions as above but for an invertible transform.

Example: Give an example of a linear transform $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,1,0)=(1,0) and T(0,1,2)=(1,2).

- What is the smallest possible rank such an example could be?
- What is the largest possible rank such an example could be?
- What is the smallest possible nullity such an example could be?
- What is the largest possible nullity such an example could be?