October 25

Announcements

- Worksheet 4 posted, due Friday
- Webassign 3.2 due Thursday

3.2 Matrix Algebra

Definition: The *i*th standard basis vector, denoted e_i , for \mathbb{R}^n is the length n vector consisting of all zeros except a one in the *i*th position. The set of all standard basis vectors for \mathbb{R}^n is call the standard basis. When it matters, we will regard e_i a column vector.

Theorem Let $A = [a_1 \dots n]^t$ be an $n \times k$ matrix and B be a $k \times m$ matrix. Then the rows of AB are a_1B, \dots, a_nB .

Example Let's consider the square matrices A = [2, -1; 1, 3] and B = [4, -2; -1, 1]. We can think of AB in two ways. Either A is acting on B by combining the rows or B is acting on A by combining the columns.

We should think about what the standard basis does. So what is $e_i^t B$?

We should think of [2, -1] as $2e_1^t - e_2^t$.

3.3 Inverses

The composition of f and g is the function $(f \circ g)$ where $(f \circ g)(x) = f(g(x))$.

Definition: Let A, B be sets and $f: A \to B$ be a function. Then the (two-sided) inverse of f is a function $g: B \to A$ such that $g \circ f$ is the identity on B (which means $(g \circ f)(x) = x$) and $f \circ g$ is the identity on A. We often denote g here by f^{-1} .

The goal is to invert linear transforms. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be linear transform. When can T be invert? It has to be one-to-one at least. Suppose $T(x_1) = T(x_2)$. Then by applying T^{-1} , we have $x_1 = x_2$. This implies $n \ge m$. By using the same argument, $T^{-1}: \mathbb{R}^n \to \mathbb{R}^m$ must be one-to-one as well so $m \ge n$. Therefore, n = m.

Theorem: Suppose $T: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transform such that T(x) = Ax. Then T is invertible if and only if m = n and the columns of A are linearly independent (or spanning).

Let's $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transform given by T(x) = [1, 2; 3, 4]x. So we know T(1,0) = (1,2) and T(0,1) = (3,4). This implies $T^{-1}(1,2) = (1,0)$ and $T^{-1}(3,4) = (0,1)$. To determine T^{-1} , we just need to know what $T^{-1}(1,0)$ and $T^{-1}(0,1)$ are. Row reduction!

The determinant of a 2,2 matrix is blah. Here's the formula for the inverse of a 2,2 matrix.

Theorem: Let A and B be invertible matrices and C and D be matrices. Then

- A^{-1} is also invertible.
- AB is invertible. The inverse is given by $(AB)^{-1} = B^{-1}A^{-1}$.
- If AC = AD then C = D
- If CA = DA then C = D

Theorem: Let A be a $n \times n$ matrix. Let S be the columns of A. Let T(x) = Ax. Then the following are equivalent:

- S spans \mathbb{R}^n
- \bullet S is linearly indepedent
- Ax = b has a unique solution for all $b \in \mathbb{R}^n$ given by $x = A^{-1}b$.
- T is onto
- T is one-to-one
- \bullet T is invertible
- A is invertible

Subspaces

Here's the defintion of subspaces. Here's an example of what is a subspace. Here's an example of what isn't a subspaces.

The solutions to homoegenous equations are subspaces. This is why we care.

Introduce kernel and range.