- 1. Find an example of each of the following. If it is not possible, write NOT POSSIBLE.
 - (a) Give an example of 2 linear transformations $S, T : \mathbb{R}^3 \to \mathbb{R}^3$ (this means they are both from \mathbb{R}^3 to \mathbb{R}^3) such that S is onto but $S \circ T$ (this is the function given by $(S \circ T)(x) = S(T(x))$) is not.

Solution: Let S be the identity and T be the zero transformation.

(b) Give an example of 2 linear transformations $S, T : \mathbb{R}^3 \to \mathbb{R}^3$ such that T is onto but $S \circ T$ is not.

Solution: Let T be the identity and S be the zero transformation.

(c) Give an example of 2 linear transformations $S,T:\mathbb{R}^3\to\mathbb{R}^3$ such that S is one-to-one but $S\circ T$ is not

Solution: Let S be the identity and T be the zero transformation.

(d) Give an example of 2 linear transformations $S,T:\mathbb{R}^3\to\mathbb{R}^3$ such that T is one-to-one but $S\circ T$ is not.

Solution: Let T be the identity and S be the zero transformation.

(e)

2. Give a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1,1) = (2,3) and T(-1,2) = (0,1). Do this using matrix inverses

Solution: Let $u_1 = (1,1)$, $u_2 = (-1,2)$ and $v_1 = (2,3)$, $v_2 = (0,1)$. Let $U = [u_1 \ u_2]$ be the matrix formed by writing u_1, u_2 as columns and $V = [v_1 \ v_2]$ be the matrix formed by writing v_1, v_2 as columns

Let F(x) = Ux and G(x) = Vx. Then we know that $F(e_1) = u_1$, $F(e_2) = u_2$ and $G(e_1) = v_1$ and $G(e_2) = v_2$. Since $\{u_1, u_2\}$ is linearly indepedent, we know that U and F are invertible. So $G \circ F^{-1}$ sends u_1 to v_1 and u_2 to v_2 , as desired. The associated matrix to $G \circ F^{-1}$ is VU^{-1} .

- 3. Find an example of each of the following. If it is not possible, write NOT POSSIBLE.
 - (a) Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects every point about the x-axis.

Solution: T(x,y) = (x,-y)

(b) Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects every point about the x = y line.

Solution: We know that T(1,1) = (1,1) and T(-1,1) = (1,-1). So we can figure out what T is by doing the process in question 2.

(c) Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that shifts every point up by one unit.

Solution: NOT POSSIBLE. This function does not map zero to zer.