KEY

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
Total:	84	

- There are 7 problems on this exam. Be sure you have all 7 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0.
- \bullet When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for each part.
- I often use x to denote the vector (x_1, x_2, \ldots, x_n) . It should be clear from context.
- Sometimes I write vectors as a row and sometimes as a column. The following are the same to me.

$$(1,2,3)$$
 $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

ullet I write the evaluation of linear transformations in a few ways. The following are the same to me.

$$T(1,2,3)$$
 $T((1,2,3))$ $T\begin{pmatrix} \begin{bmatrix} 1\\2\\3 \end{bmatrix} \end{pmatrix}$

- 1. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE".
 - (a) (2 points) Give an example of a 2×3 matrix A and a vector $b \in \mathbb{R}^2$ such that Ax = b has no solutions but Ax = 0 has infinitely many solutions.

Solution: Let

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

and b = (0, 1).

(b) (2 points) Give an example of a linear system in 3 variables whose solution space is the intersection of the x + y + z = 0 plane and the xy-plane.

Solution: The linear system given by

$$x+y+z=0$$

z = 0

(c) (2 points) Give an example of a 2×2 matrix A such that $A^4 = I_2$ but $A^2 \neq I_2$. If possible, give the matrix A explicitly.

Solution: Let A be the rotation by $\pi/2$ matrix. This is given by

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

(d) (2 points) Give an example of 2 linear transformations $T: \mathbb{R}^3 \to \mathbb{R}^3$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ such that range $(T) = \ker(S)$.

Solution: Let T(x,y) = (x,y) and S(x,y) = (0,0).

(e) (2 points) Give an example of an orthogonal matrix that is not invertible.

Solution: NOT POSSIBLE. The inverse of an orthogonal matrix is its transpose.

(f) (2 points) Give an example of an diagonalizable matrix that is not orthogonally diagonalizable.

Solution:

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

2. Let A be defined by

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 0 & 0 & 2 \end{bmatrix}.$$

(a) (4 points) Find a basis for the solution space Ax = 0.

Solution: $\{(2, -1, 0)\}$

(b) (4 points) What is the general solution to $Ax = \begin{bmatrix} 3 \\ 6 \\ -3 \end{bmatrix}$?

Solution: $(6,0,-3/2) + s_1(2,-1,0)$.

(c) (4 points) Is there a vector $y \in \mathbb{R}^3$ such that Ax = y has no solutions? If so, give an example. If not, why not?

Solution: Yes. Many possibilities.

3. Let A and B be equivalent matrices defined by

$$A = \begin{bmatrix} -3 & 3 & -1 & -9 & 3 \\ 2 & -2 & 1 & 7 & -1 \\ 4 & -4 & 5 & 23 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 2 & -2 \\ 0 & 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = B.$$

(a) (4 points) Find a basis for the solution space of Ax = 0.

Solution: $\{(1,1,0,0,0),(-2,0,-3,1,0),(2,0,-3,0,1)\}$

(b) (4 points) Let a_1, a_2, a_3, a_4, a_5 be the columns of A. Define $C = [a_1 \ a_2 \ a_3 \ a_4]$. What is a particular solution to $Cx = a_5$?

Solution: (-2, 0, 3, 0).

(c) (4 points) Using the same variables as (b), what is the general solution to $Cx = 2a_4 - a_5$?

Solution: $(6,0,3,0) + s_1(1,1,0,0) + s_2(-2,0,-3,1).$

4. Let S be a subspace of \mathbb{R}^4 defined by

$$S = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}.$$

(a) (3 points) What is a basis for $(S^{\perp})^{\perp}$?

Solution: $\{(1,1,0,0),(0,0,1,1)\}.$

(b) (3 points) What is a basis for S^{\perp} ?

Solution: $\{(1,-1,0,0),(0,0,1,-1)\}.$

(c) (3 points) Does there exist a rank 2 matrix A such that null(A) = S? If so, give an example. If not, why not?

Solution: If null(A) = S then $row(A) = S^{\perp}$ so we can take

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}.$$

(d) (3 points) Does there exist a rank 3 matrix A such that null(A) = S? If so, give an example. If not, why not?

Solution: No. By the rank-nullity theorem, rank(A) + null(A) = 4. Since dim S = 2, the rank of A must be 2.

- 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transform defined by the following properties:
 - T(0,0,1) = (0,0,0),
 - If v is in the xy-plane, then v is reflected across the x + y = 0 plane.

There is a matrix A such that T(x) = Ax. The goal of this problem is to understand A.

(a) (3 points) Find a basis $\{u, v, w\}$ where the action of T is well-understood. Give also T(u), T(v), and T(w).

Solution:

$$u = (0,0,1), T(u) = (0,0,0)$$
$$v = (1,1,0), T(v) = (-1,-1,0)$$
$$w = (1,-1,0), T(w) = (1,-1,0)$$

(b) (3 points) Find the eigenvalues of A and a basis for each eigenspace of A. (Think geometrically.)

Solution: Part (a) gives the answer.

 $\lambda = 0$ is an eigenvalue with eigenspace spanned by u.

 $\lambda = -1$ is an eigenvalue with eigenspace spanned by v.

 $\lambda = 1$ is an eigenvalue with eigenspace spanned by w.

(c) (3 points) What is A? You may express it as product of matrices and their inverses.

Solution: Using the theory of diagonalization,

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix}^{-1}$$

(d) (3 points) What is A^2 ? Give it explicitly as a single matrix. (Think geometrically.)

Solution: We can see that A^2 is projecting onto the xy-plane. So

$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

6. Let A be the symmetric matrix defined as

$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & -2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}^{-1}.$$

(a) (3 points) Find the eigenvalues of A and a basis for each eigenspace of A.

Solution: $\lambda = -1$ is an eigenvalue with $\{(1,1,1)\}$ as a basis for its eigenspace. $\lambda = 2$ is an eigenvalue with $\{(-1,0,1),(-2,1,1)\}$ as a basis for its eigenspace.

- (b) (3 points) Find a basis for each of the following subspaces.
 - null(A)

Solution: Since 0 is not an eigenvalue, $null(A) = \{0\}$ with basis \emptyset .

• $\operatorname{null}(A - I)$

Solution: Since 1 is not an eigenvalue, $null(A) = \{0\}$ with basis \emptyset .

• $\operatorname{null}(A-2I)$.

Solution: We have that $\text{null}(A-2I)=E_2$ which has basis $\{(-1,0,1),(-2,1,1)\}$.

(c) (3 points) Find an orthogonal matrix Q and a diagonal matrix D such that $A = QDQ^{-1}$.

Solution: We use Gram-Schmidt to perform an orthogonal basis for each eigenspace. An orthonormal basis for the eigenspace corresponding to $\lambda = -1$ is $\{(1/3, 1/3, 1/3)\}$. An orthonormal basis for $\lambda = 2$ is $\{\frac{1}{\sqrt{2}}(-1,0,1), \sqrt{\frac{2}{3}}(-1/2,1,-1/2)\}$.

(d) (3 points) Find all $k \in \mathbb{R}$ such that $A - kI_3$ is not invertible.

Solution: k = -1, 2.

- 7. Let v = (2,1,2) and $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x) = \operatorname{proj}_v x$.
 - (a) (4 points) Find an orthogonal basis for \mathbb{R}^3 that contains v. (Hint: first find a basis for \mathbb{R}^3 that contains v.)

Solution: $\{(2,2,1),(1,0,-2),(0,1,-2)\}.$

(b) (4 points) There exists a matrix A such that T(x) = Ax. Find the eigenvalues of A and a basis for each eigenspace of A. (Hint: see part (a).)

Solution: The eigenspace corresponding to 1 is spanned by (2,2,1).

The eigenspace corresponding to 0 is spanned by (1,0,-2),(0,1,-2).

- (c) (4 points) Let $e_1 = (1, 0, 0)$. Evaluate the following:
 - Ae_1

Solution: This is $T(e_1) = \text{proj}_v e_1 = (4/9, 4/9, 2/9)$.

 \bullet A^2e_1

Solution: Doing two projections is the same as one.

• $A^{100}e_1$

Solution: Doing one hundred projections is the same as one.