Name: Signature:

- 1. (30 points) In the following, each correct answer is worth 2 points. There is no penalty for incorrect answers. You do not need to justify your answers.
 - (a) The rank of a matrix is
 - \Box the dimension of its range.
 - \Box the dimension of its null space.
 - \Box both of the above
 - \Box neither of the above
 - (b) Write down an *orthogonal* basis for span $\left\{ \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} -7 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$
 - (c) Let A be a 3×3 matrix whose only eigenvalue is 4, with associated eigenspace all of \mathbb{R}^3 . Find A.
 - (d) Let $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3)$ be a square matrix with columns \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{a}_3 , where $\mathbf{a}_1 = \mathbf{a}_2 + \mathbf{a}_3$. Find $\det(A)$.
 - (e) Let A be a 3×3 matrix with rank(A) = 3. What is rank (A^{-1}) ?
 - (f) If $A = \begin{pmatrix} 2 & 0 & 5 & 1 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 7 \end{pmatrix}$, list all the eigenvalues of A.
 - (g) Give an example of a matrix whose domain is \mathbb{R}^3 and range is span $\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$.

- (h) Find a vector \mathbf{v} so that $\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \mathbf{v} \right\}$ is an orthogonal basis for \mathbb{R}^2 .
- (i) Give an example of a nonzero vector \mathbf{v} that lies in S^{\perp} , if $S = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$.
- (j) If $S = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 17 \\ -8 \end{pmatrix} \right\}$, find $\operatorname{proj}_{S} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$.
- (k) Write down a basis for the null space of $\begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \end{pmatrix}$.
- (1) If $A = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1/3 \end{pmatrix}$, what is A^{-1} ?
- (m) Let $A = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$. For which vectors \mathbf{x} does $\lim_{k \to \infty} A^k \mathbf{x}$ exist?
- (n) Let A be a 2×2 matrix with eigenvalues 0 and 4. What is the rank of A?
- (o) If A is a noninvertible square matrix, then the system $A\mathbf{x} = \mathbf{0}$ has
 - \square no solution.
 - \Box a unique solution.
 - \Box infinitely many solutions.

2. (7 points) Let $A = \begin{pmatrix} 4 & 2 \\ -3 & -1 \end{pmatrix}$. Find all eigenvalues of A and their associated eigenspaces.

3. (3 points) Compute det(A), if $A = \begin{pmatrix} 1 & 3 & 0 \\ -1 & 5 & 4 \\ 0 & 2 & 1 \end{pmatrix}$.

4. (5 points) Let $S = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}$. Compute $\operatorname{proj}_{S} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

5. (5 points) If A is a matrix such that $A \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, find A.

- 6. (10 points) Let $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.
 - (a) (5 points) Find a basis for Range(A).

(b) (5 points) Find a basis for Null(A).

- 7. (10 points) Let $S = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} \right\}$.
 - (a) (4 points) What is $\dim(S^{\perp})$? Explain either in 1-2 sentences or by drawing a picture.

(b) (6 points) Find an *orthogonal* basis for S. It may help to recall that $(\mathbf{u} - \operatorname{proj}_{\mathbf{v}} \mathbf{u}) \cdot \mathbf{v} = 0$, for any nonzero vectors \mathbf{u} and \mathbf{v} .

- 8. (10 points) Find a matrix A such that
 - $\operatorname{Null}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\},$
 - Range $(A) = (\text{Null}(A))^{\perp}$, and
 - 6 is an eigenvalue of A.