Your Name	Student ID #						

- Do not open this exam until you are told to begin. You will have 1 hour and 50 minutes for the exam.
- Check that you have a complete exam. There are 6 questions for a total of 80 points.
- You are allowed to have one double sided, handwritten note sheet. Calculators are not allowed.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. With the exception of True/False questions, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	20	
2	8	
3	10	
4	12	
5	12	
6	18	
Total:	80	

1.

(20)	points) You do not need to show any work for this question.
(a)	For any $n \times n$ matrix A , if det $A > 0$, then the determinant of each $n - 1 \times n - 1$ minor of A is also positive.
	○ True ○ False
(b)	If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a collection of nonzero orthogonal vectors in \mathbb{R}^n , then it is a basis for \mathbb{R}^n .
	○ True ○ False
(c)	If $T: \mathbb{R}^m \to \mathbb{R}^n$ is an onto linear transformation, and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a linearly independent set of vectors in \mathbb{R}^m , then $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_k)\}$ is linearly independent.
	○ True ○ False
(d)	If A and B are $n \times k$ matrices, the set of solutions to the equation $A\mathbf{x} = B\mathbf{x}$ is a subspace of \mathbb{R}^k .
	○ True ○ False
(e)	If c is an eigenvalue of A, then c^2 is an eigenvalue of A^2 .
	○ True ○ False
(f)	If span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} = \text{span } \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$, then $n = k$. \bigcirc True \bigcirc False
(g)	If A and B are matrices such that AB is an $n \times n$ matrix, and $\det(AB) \neq 0$, then A and B are invertible.
	○ True ○ False
(h)	If S is a subspace of dimension k and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a set of vectors that spans S, then $n \geq k$.
	○ True ○ False
(i)	If A is an $n \times n$ matrix such that $A^T A = I$, then $A = I$.
	○ True ○ False
(j)	If A is an $n \times n$ matrix, then row $(A) = \operatorname{col}(A)$.
	○ True ○ False

2. (8 points) (a) Given 3 data points, (-1,0), (0,-1), (2,1), **set up** the linear system to find a line through all three points. You do not need to solve.

(b) **Set up** the normal equations to find the least-squares solution (the best-fit line through the data points). You do not need to solve.

(c) Will the normal equations have a unique solution? Explain why or why not. Again, you do not need to solve.

- 3. (10 points) Consider the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
 - (a) Find a basis for W = col (A). What is dim W?

(b) Find a basis for W^{\perp} , the orthogonal complement to W. What is dim W^{\perp} ?

(c) If \mathbf{u} is any vector in W^{\perp} , what is the closest vector in W to \mathbf{u} ? Explain your answer.

- 4. (12 points) Let A be the matrix $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$.
 - (a) Find the eigenvalues and a basis for each eigenspace of A. Clearly label your answers.

(b) Fill in the following table with all values of λ such that $A - \lambda I$ has the given nullity. If no such λ exists, write DNE.

λ	$ \text{nullity}(A - \lambda I) $
	0
	1
	2
	3

(c) Are there any vectors \mathbf{x} such that the linear transformation $T(\mathbf{x}) = A^T \mathbf{x}$ satisfies $T(\mathbf{x}) = \mathbf{x}$? Explain why or why not.

- 5. (12 points) Let A be the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & k \end{bmatrix}$, where k is some real number.
 - (a) Find all values of k such that A is invertible. Justify your answer.

(b) Find all values of k such that the columns of A do not span \mathbb{R}^3 . Justify your answer.

(c) Find all values of k such that k is an eigenvalue of A. Justify your answer.

(d) Find all values of k such that the linear transformation $T(\mathbf{x}) = A\mathbf{x} - 2\mathbf{x}$ is onto. Justify your answer.

- 6. (18 points) Give an example of each of the following or explain why one cannot exist. This question continues on the next page.
 - (a) A 3×4 matrix A such that col (A) is the plane x + y + z = 0.

(b) A nonzero linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ and a nonzero vector \mathbf{v} such that $T(\mathbf{x} + \mathbf{v}) = T(\mathbf{x})$ for all \mathbf{x} in \mathbb{R}^2 .

(c) A basis \mathcal{B} such that $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\mathcal{B}}$ and $\begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}_{\mathcal{B}}$.

This question is continued from the previous page.

(d) A square matrix A other than the identity matrix such that $A^2 = I$ but -1 is not an eigenvalue of A.

(e) Matrices A and B such that AB = I where B has more columns than rows.

(f) A singular 3×3 matrix A with eigenvalues 1, 2, and 3.