1. (10 points) Let
$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ -3 & 3 & 1 & 0 \\ 1 & 2 & -5 & -2 \end{bmatrix}$$
.

Calculate the inverse of B, or explain why it does not exist.

Note that $det(B) = 1 \cdot -1 \cdot 1 \cdot -2 = 2 \neq 0$ *so B has an inverse.*

Form the augmented matrix and perform Gauss-Jordan elimination:

$$[B|I] = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ -3 & 3 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 2 & -5 & -2 & 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -3 & 3 & 1 & 0 \\ 0 & 0 & 0 & 1 & 10 & -\frac{17}{2} & -\frac{5}{2} & -\frac{1}{2} \end{bmatrix}$$

The inverse matrix is
$$B^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ -3 & 3 & 1 & 0 \\ 10 & -\frac{17}{2} & -\frac{5}{2} & -\frac{1}{2} \end{bmatrix}$$
.

- 2. (10 total points) Determine whether each of the following is a subspace of \mathbb{R}^4 . Justify your answer.
 - (a) (5 points) The set V of vectors of the form $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$, where a+b+c=0 and b+c+d=0.

Yes, V *is a subspace of* \mathbb{R}^4 .

Note that V is the nullspace of the matrix $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$.

By Theorem 4.3 in the textbook, every nullspace is a subspace.

(b) (5 points) The set W of vectors of the form $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$, where $a^2 + b^2 + c^2 + d^2 = 0$.

Yes, W is a subspace of \mathbb{R}^4 .

The only vector in \mathbb{R}^4 that satisfies the condition is the zero vector $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

The set $\{0\}$ is a subspace of \mathbb{R}^4 of dimension zero.

3. (10 points) Let
$$A = \begin{bmatrix} -3 & -6 & 6 \\ 3 & 6 & -3 \\ 0 & 0 & 3 \end{bmatrix}$$
.

Find the eigenvalues of A. Then find bases for the corresponding eigenspaces of the matrix.

First, calculate the eigenvalues.

$$\det(A - \lambda I) = \begin{vmatrix} -3 - \lambda & -6 & 6 \\ 3 & 6 - \lambda & -3 \\ 0 & 0 & 3 - \lambda \end{vmatrix}$$
$$= (3 - \lambda) \cdot [(-3 - \lambda)(6 - \lambda) + 18]$$
$$= -\lambda^3 + 6\lambda^2 - 9\lambda$$
$$= -\lambda(\lambda - 3)^2$$

The eigenvalues are $\lambda = 0.3$. Now calculate bases for the eigenspaces.

 $\lambda = 0$: Form the augmented matrix and perform Gauss-Jordan elimination

$$[A - 0 \cdot I | \mathbf{0}] = \begin{bmatrix} -3 & -6 & 6 & 0 \\ 3 & 6 & -3 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution is $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \cdot \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, and a basis for the 0-eigenspace is $\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \right\}$

 $\lambda = 3$: Form the augmented matrix and perform Gauss-Jordan elimination

$$[A-3 \cdot I \mid \mathbf{0}] = \begin{bmatrix} -6 & -6 & 6 \mid 0 \\ 3 & 3 & -3 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 1 & -1 \mid 0 \\ 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{bmatrix}$$

The general solution is $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \cdot \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$,

and a basis for the 3-eigenspace is $\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$

4. (10 points) Find a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ with kernel $\{\mathbf{0}\}$, or explain why such a linear transformation cannot exist.

This is not possible.

Let A be the matrix of T. Then A is 3×4 .

We know $rank(A) \leq 3$ because A has 3 rows.

But $\operatorname{nullity}(A) + \operatorname{rank}(A) = 4$. Thus $\operatorname{nullity}(A) \ge 1$.

Thus the null space of A is non-trivial.

The kernel of T equals the null space of A, so it is non-trivial too.

5. (10 points) Find matrices A and B such that rank(AB) > rank(A), or explain why such matrices cannot exist.

This is not possible.

Assume A is $m \times n$ and B is $n \times \ell$.

The rank of AB is the dimension of the column space of AB.

Choose $\mathbf{u} \in \operatorname{col}(AB)$.

There is a $\mathbf{v} \in \mathbb{R}^{\ell}$ such that $\mathbf{u} = (AB)\mathbf{v}$.

Write $B\mathbf{v} = \mathbf{w}$. Then

$$\mathbf{u} = (AB)\mathbf{v}$$
$$= A(B\mathbf{v})$$
$$= A\mathbf{w}$$

Thus $\mathbf{u} \in \operatorname{col}(A)$.

We have shown that $col(AB) \subseteq col(A)$ *. Thus*

$$rank(AB) = dim(col(AB))$$

 $\leq dim(col(A))$
 $= rank(A)$

So rank(AB) is always less than or equal to rank(A).