KEY

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
Total:	60	

- There are 5 problems on this exam. Be sure you have all 5 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0.
- When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for the entire page.
- I often use x to denote the vector (x_1, x_2, \dots, x_n) . It should be clear from context.
- Sometimes I write vectors as a row and sometimes as a column. The following are the same to me.

$$(1,2,3)$$
 $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

• I write the evaluation of linear transforms in a few ways. The following are the same to me.

$$T(1,2,3)$$
 $T((1,2,3))$ $T\left(\begin{bmatrix}1\\2\\3\end{bmatrix}\right)$

- 1. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE". You do not need to justify.
 - (a) (3 points) If possible, give an example of a linear system with more variables than equations and only finitely many solutions.

Solution: Possible. Consider the system x + y + z = 1; x + y + z = 2. This has no solutions.

(b) (3 points) If possible, give an example of a one-to-one linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose range does not contain (1,0,0).

Solution: Not possible. Unifying theorem.

(c) (3 points) If possible, give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ that is not one-to-one.

Solution: Possible. T(x) = 0.

(d) (3 points) If possible, give an example of a linearly dependent set of 3 vectors $\{u, v, w\}$ in \mathbb{R}^3 such that $\{u, v\}, \{u, w\}$, and $\{v, w\}$ are linearly independent.

Solution: Possible. Let $u = e_1, v = e_2, w = e_1 + e_2$.

2. Let

$$A = \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 1 & 4 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

(a) (6 points) Give the general solution to Ax = b. (Hint: The sum of the components in the reduced echelon form of A is 5.)

Solution: $x = (3, -1, 0, 0) + s_1(1, -1, 1, 0) + s_2(-2, -1, 0, 1).$

(b) (3 points) Give 3 particular solutions to Ax = b that do not lie on a line. To save time, you may consider naming some vectors. You may also leave your answer as a linear combination of vectors. (Here we are thinking of vectors as points in space.)

Solution: Many answers. For example, the 3 vectors formed by setting $(s_1, s_2) = (0, 0), (1, 0), (0, 1)$.

(c) (3 points) Does there exists a vector $y \in \mathbb{R}^3$ such that Ax = y has no solutions? Justify your answer. This is a yes-no question.

Solution: Yes. The echelon form of A has a row of zeros so the columns of A are not spanning.

3. Let A and B be equivalent matrices given by

$$A = \begin{pmatrix} 1 & -1 & 3 & 6 \\ 2 & -2 & 0 & 6 \\ 3 & -3 & 8 & 17 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B.$$

Let $S = \{a_1, a_2, a_3, a_4\}$ be the set of columns of A. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined by T(x) = Ax.

The following are quick questions that you should briefly justify with a single sentence or two.

(a) (2 points) Is T one-to-one?

Solution: No. There is a free variable in B.

(b) (2 points) Is T onto?

Solution: No. There is a row of zeros in B.

(c) (2 points) Is S linearly independent?

Solution: No. Same question as (a).

(d) (2 points) Is S spanning?

Solution: No. Same question as (b).

(e) (2 points) Let $b = 4a_1 + 20a_2 + 2018a_3$. What is the dimension of the solution space to Ax = b? (Hint: If you claim a solution exists or does not exist, you should explain why.)

Solution: Since b is a linear combination of columns of A, there is a solution. There are 2 free variables so the dimension is 2.

(f) (2 points) Is there a choice of $b \in \mathbb{R}^3$ such that the solution space to Ax = b contains finitely many points? (Same hint as above.)

Solution: Yes. Since the columns of A are not spanning, there exists a b so that Ax = b has no solution.

4. Let

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}.$$

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation such that

$$T(u_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, T(u_2) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, T(u_3) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

(a) (4 points) Is T one-to-one? Is it onto? Briefly justify.

Solution: The map T is not one-to-one since $T(u_2 + u_3) = T(u_1)$ but $u_2 + u_3 \neq u_1$. The map T is onto because $T(u_1)$ and $T(u_2)$ are linearly independent vectors contained in the range.

(b) (4 points) Write $e_3 = (0,0,1)$ as a linear combination of u_1, u_2, u_3 .

Solution: $e_3 = u_3 - 3u_1 - 2u_2$.

(c) (4 points) There is a matrix B such that T(x) = Bx. What is B?

Solution: This amounts to determining $T(e_1), T(e_2)$, and $T(e_3)$. We are given $T(u_1), T(u_2)$, and $T(u_3)$.

Since $u_1 = e_1$ and $u_2 = e_2$, we're almost done. Using linearity and the previous part,

$$T(e_3) = T(u_3) - 3T(u_1) - 2T(u_2) = (-2, -1).$$

Since $B = [T(e_1) T(e_2) T(e_3)],$

$$B = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \end{pmatrix}.$$

5. Let A and B be equivalent matrices given by

$$A = \left(\begin{array}{rrrr} 1 & 3 & 5 & 4 & 13 \\ -1 & 0 & -2 & 2 & -1 \\ 1 & 8 & 10 & 0 & 19 \end{array}\right) \sim \left(\begin{array}{rrrrr} 1 & 0 & 2 & 0 & 3 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{array}\right) = B$$

As usual, let a_1, a_2, a_3, a_4, a_5 denote the columns of A.

(a) (4 points) Give the homogeneous solution to Ax = 0.

(b) (4 points) Give the general solution to $2Ax = a_2 - a_4$. (Hint: $Ae_i = a_i$.)

Solution: Using the hint, we deduce that (0, 1/2, 0, -1/2, 0) is particular solution. The general solution is then

$$x = (0, 1/2, 0, -1/2, 0) + s_1(-2, -1, 1, 0, 0) + s_2(-3, -2, 0, -1, 0).$$

(c) (4 points) The columns corresponding to free variables are a_3 and a_5 . Write them as a linear combination of a_1, a_2, a_4 .

Solution:

$$a_3 = 2a_1 + a_2$$

$$a_5 = 3a_1 + 2a_2 + a_4$$