| Your Name | <br>Student ID # |  |   |  |  |  |  |
|-----------|------------------|--|---|--|--|--|--|
|           |                  |  | 1 |  |  |  |  |
|           |                  |  |   |  |  |  |  |
|           |                  |  |   |  |  |  |  |

- Do not open this exam until you are told to begin. You will have 50 minutes for the exam.
- Check that you have a complete exam. There are 5 questions for a total of 50 points.
- You are allowed to have one handwritten note sheet. Only basic non-graphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

| Question | Points | Score |
|----------|--------|-------|
| 1        | 8      |       |
| 2        | 16     |       |
| 3        | 8      |       |
| 4        | 8      |       |
| 5        | 10     |       |
| Total:   | 50     |       |

- 1. Multiple choice questions. You are **not required to show any work**.
  - (a) (1 point) If A and B are invertible  $n \times n$  matrices, then  $(A+B)^{-1} = A^{-1} + B^{-1}$ .
    - O False O True
  - (b) (1 point) How many  $2 \times 2$  matrices A satisfy  $A^2 = I_2$ ?
    - $\bigcirc$  2  $\bigcirc$  4  $\bigcirc$  Infinitely many
  - (c) (1 point) Every subspace is the null space of some matrix.
    - $\bigcirc$  True False
  - (d) (1 point) A subspace  $S \neq \{0\}$  can have a finite number of vectors.
    - $\bigcirc$  False
  - (e) (1 point) If W is a subspace of  $\mathbb{R}^n$  such that  $\dim(W) = n$ , then W has to be the whole space  $\mathbb{R}^n$ .
    - $\bigcirc$  True  $\bigcirc$  False
  - (f) (1 point) If A is the matrix of transformation corresponding to the linear transformation  $T:\mathbb{R}^2\to\mathbb{R}^2$  that rotates  $\mathbb{R}^2$  by 30° (i.e. 30 degrees) about the origin, then which of the following is true? ( $I_2$  denotes the usual  $2 \times 2$  identity matrix.)
    - $\bigcirc \ A^3 = I_2 \quad \bigcirc \ A^6 = I_2 \quad \bigcirc \ A^{12} = I_2 \quad \bigcirc \ A^9 = I_2$
  - (g) (1 point) What is the nullity of the matrix  $A = \begin{bmatrix} 5 & 17 & 2017 \end{bmatrix}$ ?
    - $\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3$
  - (h) (1 point) Let A, B be  $n \times n$  matrices, let  $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ , and let s, t be scalars. Which of the following are always true? (Check all that apply.)

    - $\bigcirc (AB)^2 = A^2B^2$ .  $\bigcirc (A+B)^2 = A^2 + 2AB + B^2$ .  $\bigcirc A\mathbf{0} = \mathbf{0}$ .  $\bigcirc A^2 = A$  implies  $A(A-I_n) = 0$ , so either  $A = I_n$  or  $A = \mathbf{0}_{nn}$ .
- 2. Short answer questions. Please **justify** any work briefly.
  - (a) (3 points) Give an example of two subspaces  $S_1$  and  $S_2$  of  $\mathbb{R}^4$  each of dimension 2 where the only vector belonging to both  $S_1$  and  $S_2$  is **0**.

(b) (4 points) Verify if the subset S in  $\mathbb{R}^4$  consisting of vectors of the form  $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$  satisfying

 $x_1 + 2x_2 + 3x_3 = 0$  is a subspace.

(c) (4 points) Let  $A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ . Compute  $A^4$ .

(d) (5 points) Find a linear transformation  $T: \mathbb{R}^2 \to \mathbb{R}^3$  such that the range of T is the plane x+y-z=0. Does T have to be one-to-one?

3. Let A be the following  $3 \times 3$  matrix:

$$A = \begin{bmatrix} 1 & 4 & -3 \\ 1 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}.$$

(a) (5 points) Compute  $A^{-1}$ .

(b) (3 points) Show that  $A^T$  is invertible, with  $(A^T)^{-1} = (A^{-1})^T$ .

4. Suppose  $T: \mathbb{R}^2 \to \mathbb{R}^3$  is a linear transformation such that the following hold.

$$T\left(\left[\begin{array}{c}2\\0\end{array}\right]\right) = \left[\begin{array}{c}0\\2\\6\end{array}\right] \qquad T\left(\left[\begin{array}{c}0\\3\end{array}\right]\right) = \left[\begin{array}{c}-3\\0\\3\end{array}\right]$$

(a) (5 points) Find  $T\left(\left[\begin{array}{c} a \\ b \end{array}\right]\right)$  for arbitrary real numbers a and b.

(b) (3 points) Find the matrix of transformation A corresponding to T, i.e., find the matrix A such that  $T(\mathbf{x}) = A\mathbf{x}$  for all  $\mathbf{x} \in \mathbb{R}^2$ .

5. Let A be the following  $3 \times 5$  matrix. Its reduced echelon form B is provided.

$$A = \begin{bmatrix} 1 & 1 & 7 & 0 & 0 \\ 3 & 1 & 15 & 6 & 0 \\ 0 & 2 & 6 & 3 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 4 & 0 & -3 \\ 0 & 1 & 3 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = B.$$

(a) (4 points) Let T be the linear transformation having A as the matrix of transformation. Write down its domain and codomain. Is T one-to-one? Onto?

(b) (4 points) Find a basis for null(A), and compute the nullity of A.

(c) (2 points) Find another basis for null(A) different from the one you obtained in (b) above.