$\begin{array}{c} {\rm Math} \ 308{\rm G/H} \ \text{-} \ {\rm Winter} \ 2018 \\ {\rm Midterm} \ 1 \\ 2018 \text{-} 01 \text{-} 27 \end{array}$

Name:	
Student ID Number:	

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
Total:	60	

- There are 5 problems on this exam. Be sure you have all 5 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0.
- When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for each part.
- I often use x to denote the vector (x_1, x_2, \dots, x_n) . It should be clear from context.
- Sometimes I write vectors as a row and sometimes as a column. The following are the same to me.

$$(1,2,3)$$
 $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

• I write the evaluation of linear transforms in a few ways. The following are the same to me.

$$T(1,2,3)$$
 $T((1,2,3))$ $T\begin{pmatrix} \begin{bmatrix} 1\\2\\3 \end{bmatrix} \end{pmatrix}$

- 1. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE".
 - (a) (3 points) Give an example of a linear system with more equations than variables and infinitely many solutions.

(b) (3 points) Give an example of an invertible matrix A such that A^2 is the zero matrix.

(c) (3 points) Give an example of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that is one-to-one but (1,0,1) is not in range(T).

(d) (3 points) Give an example of a linear system whose solution space is the intersection of the w + x + y + z = 2 and the x + y = 1 plane in \mathbb{R}^4 .

2. Let

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Do the following parts:

(a) (3 points) Compute A^{-1} .

(b) (3 points) Compute AB.

(c) (3 points) Compute AD^2 .

(d) (3 points) Give the general solution to $Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. (Hint: Use the first part and the fact $Ax = b \implies x = A^{-1}b$.)

3. Let

$$A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

Let a_1, a_2, a_3, a_4 denote the columns of A. Let $S = \{a_1, a_2, a_3, a_4\}$. Do the following parts:

(a) (3 points) Write null(A) as a span of some vectors.

(b) (3 points) Give the general solution to $Ax = a_1 + a_3$.

(c) (3 points) Is S a spanning set? If not, how many additional vectors must be added to S to make it spanning?

(d) (3 points) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ have the property that

$$T(1,0,0,0) = a_1, T(1,1,0,0) = a_2, T(1,1,1,0) = a_3, T(1,1,1,1) = a_4.$$

It turns out $\dim(\ker(T)) = 2$. Write $\ker(T)$ as the span of 2 vectors.

4. Let A and B be equivalent matrices defined by

$$A = \begin{bmatrix} 2 & -1 & 1 & -1 \\ -1 & -1 & 2 & 5 \\ 0 & 2 & 3 & 13 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix} = B.$$

Define $T: \mathbb{R}^4 \to \mathbb{R}^3$ by T(x) = Ax.

(a) (3 points) Write range(T) as a span of some vectors. Is T onto?

(b) (3 points) Write null(A) as a span of some vectors. Is T one-to-one?

(c) (3 points) Let v = (1, 31, 20, 18). Give a vector w different from v such that T(v) = T(w).

(d) (3 points) Write the first column of A as a linear combination of the second, third, and fourth column of A.

5. Let P be the plane x+y-z=0. Let $T:\mathbb{R}^3\to\mathbb{R}^3$ be the linear transformation given by orthogonal projection onto P. This means

$$T(v) = \begin{cases} 0 & \text{if } v \text{ is normal to } P, \\ v & \text{if } v \text{ is in } P. \end{cases}$$

(a) (3 points) Give a spanning and linearly independent subset of \mathbb{R}^3 consisting of a vector normal to P and two vectors that lie in P.

(b) (3 points) There is a matrix A such that T(x) = Ax. What is A? You may express A as a product of matrices and their inverses.

(c) (3 points) Is T one-to-one? If not, give two vectors r, s such that $r \neq s$ but T(r) = T(s).

(d) (3 points) Is T onto? If not, give a vector in the codomain that is not in the range of T.