Math 308H - Winter 2018 Final 2018-03-15

KEY

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
Total:	72	

- There are 6 problems on this exam. Be sure you have all 6 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0.
- When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for each part.
- $\bullet\,$ I treat row and column vectors as the same.
- For any linear transformation T, there exists a matrix A such that T(x) = Ax. I defined the determinant, rank, and nullity of T using A. This means,

$$det(T) = det(A)$$
, $rank(T) = rank(A)$, $nullity(T) = nullity(A)$.

- 1. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE". You do not need to justify your answers.
 - (a) (2 points) If possible, give an example of a linear system of equations whose solution space is the $(1,2,3) + s_1(1,0,0)$ line.

Solution:

$$y = 2, z = 3$$

(b) (2 points) If possible, give an example of a 2×2 matrix A such that $A \neq 0$, I and A(A - I) = 0.

Solution: This means that $A^2 = A$ so any projection matrix would work. For example,

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

(c) (2 points) If possible, give an example of a 2×2 invertible matrix, A, such that $e_1 - e_2 \notin \operatorname{col}(A)$.

Solution: NOT POSSIBLE. An invertible matrix must have spanning columns.

(d) (2 points) If possible, give an example of two invertible 2×2 matrices A and B such that A + B is not invertible.

Solution: Let A = -B = I.

(e) (2 points) If possible, give an example of two 2×2 matrices A and B that are neither zero nor the identity matrix such that AB = BA.

Solution: Take any two diagonal matrices that are not zero or the identity.

(f) (2 points) If possible, give an example of two linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ such that 2 is an eigenvalue of T and 3 is an eigenvalue of S but 6 is not an eigenvalue of S.

Solution: T(x,y) = (2x,0), S(x,y) = (0,3y).

2. (a) (6 points) Let

$$A = \begin{bmatrix} 1 & -3 \\ 0 & 2 \end{bmatrix}.$$

1. What is the characteristic polynomial of A^{-1} ?

Solution: $(1 - \lambda)(1/2 - \lambda)$.

2. The matrix A is diagonalizable so it can be written as $A = UDU^{-1}$. What is U and D?

Solution:

$$U = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

(b) (6 points) Let

$$B = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix}.$$

1. What is the reduced echelon form of B?

Solution:

$$\begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

2. What is the general solution to Bx = (6,3,6)?

Solution:

$$(1,1,1) + s_1(-1/2,-2,1).$$

3. Let A and B be equivalent matrices defined by

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & 0 & 3 \\ 0 & 1 & 1 & 0 \\ 2 & 5 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -7 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = B$$

Let a_1, a_2, a_3, a_4 denote the columns of A.

- (a) (3 points) Do not write express a basis as a matrix.
 - 1. Give a basis for $col(2A^t)$.

Solution: The first thing to note that is $col(2A^t) = row(A)$. A basis is then

$$\{(1,0,0,-7),(0,1,0,3),(0,0,1,-3)\}$$

2. Give a basis for null(A).

Solution:

$$\{(7, -3, 3, 1)\}$$

3. Give a basis for row(A).

Solution:

$$\{(1,0,0,-7),(0,1,0,3),(0,0,1,-3)\}$$

- (b) (3 points) These should be quick questions.
 - 1. What is rank(A)?

Solution: 3

2. What is nullity (A^tD^{-1}) , where D is the 4×4 diagonal matrix consisting of 1, 2, 3, 4 along the diagonal.

Solution: 1

3. What is det(2A)?

Solution: 0

(c) (3 points) Give a nontrivial linear combination of the columns of A that sum to zero. You may use a_1, a_2, a_3, a_4 to denote the columns of A.

Solution: $7a_1 - 3a_2 + 3a_3 + a_4 = 0$.

(d) (3 points) Let C be the 4×3 matrix given by $C = [a_1 \ a_2 \ a_3]$. So C is the submatrix of A consisting of the first 3 columns. Give the general solution for $Cx = a_1 + a_4$.

Solution: From the previous part, we know that $a_4 = -7a_1 + 3a_2 - 3a_3$. This means that $a_1 + a_4 = -6a_1 + 3a_2 - 3a_3$. The general solution is then

$$x = (-6, 3, -3).$$

There is no homogenous part because the columns of C are linearly independent.

4. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(w, x, y, z) = (w + y + z, x + y + z, x + y + z).$$

(a) (3 points) There is a matrix A such that T(x) = Ax. What is A?

Solution:

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

(b) (3 points) Let v = (0, 3, 0, 8). Give the general solution to Ax = 2Av + (2, 1, 1).

Solution: A particular solution to Ax = 2Av is x = 2v. A particular solution to Ax = (2,1,1) is (2,1,0). The general solution to the homogenous system Ax = 0 is $s_1(-1,-1,1,0) + s_2(-1,-1,0,1)$. The general solutin to Ax = 2Av = (2,1,1) is then

$$2v + (2,1,0) + s_1(-1,-1,1,0) + s_2(-1,-1,0,1).$$

(c) (3 points) Does there exists a rank 2 linear transformation S such that $T \circ S$ is the zero transformation? If so, give an example. If not, why not?

Solution: Yes. If $T \circ S = 0$ then range $(S) \subseteq \ker(T)$. We know a basis for $\ker(T)$ so define

$$S(x) = \begin{bmatrix} -1 & -1 \\ -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} x.$$

(d) (3 points) Does there exists a rank 3 linear transformation S such that $T \circ S$ is the zero transformation? If so, give an example. If not, why not?

Solution: No. If range(S) $\subseteq \ker(T)$, then rank(S) \le nullity(T).

5. Let

$$A = \begin{bmatrix} 0 & -1 & \frac{37}{3} & -\frac{253}{15} \\ 0 & 2 & 0 & -\frac{1}{5} \\ 0 & 0 & 2 & \frac{7}{5} \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

be a matrix which decomposes as $A = UDU^{-1}$, where

$$U = \begin{bmatrix} 1 & -1 & 18 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 3 & 7 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Let u_1, u_2, u_3, u_4 be the columns of U and $\mathcal{B} = \{u_1, u_2, u_3, u_4\}.$

(a) (6 points) Fill out this table.

Eigenvalue λ	Alg. Multiplicity of λ	Geo. Multiplicity of λ	Basis for E_{λ}
0	1	1	$\{u_1\}$
2	2	2	$\{u_2, u_3\}$
3	1	1	$\{u_4\}$

(b) (3 points) Let $x = u_1 + u_2 + u_3 + u_4$. Express $A^{18}x$ as a linear combination of u_1, u_2, u_3, u_4 . You are allowed to have exponents of numbers in your answer. (Hint: x has been expressed as the sum of eigenvectors.)

Solution: $2^{18}u_2 + 2^{18}u_3 + 3^{18}u_4$.

(c) (3 points) What are the eigenvalues for $A^2 - 2A$?

Solution: 0,3

- 6. Let T(x) = Ax, where A is as defined in Question 5. Let u_1, u_2, u_3, u_4 also be as defined in Question 5.
 - (a) (4 points) Give two vectors v, w such that the triangle with vertices $\{T(0), T(v), T(w)\}$ has 6 times the area as the triangle with vertices $\{0, v, w\}$. Be sure to justify your answer. (Hint: It is unnecessary to compute the area of these triangles.)

Solution: Let $v = u_2$ and $w = u_4$. Then $T(u_2) = 2u_2$ and $T(u_4) = 3u_4$. So the area of the triangle increased by a factor of 6.

- (b) (4 points) Find a basis for each of the following subspaces. If a subspace is trivial, then write \emptyset for its basis.
 - $\operatorname{null}(A 2I)$

Solution: This is a basis for the eigenspace corresponding to 2, $\{u_2, u_3\}$.

• $\operatorname{null}(A^2 - 3I)$.

Solution: Since 3 is not an eigenvalue of A^2 , this subspace is trivial so a basis is \emptyset .

- (c) (4 points) Let $B = \{u_1, u_2, u_3, u_4\}$ be a basis.
 - What is the general solution to $Ax = u_2 + 2u_3$?

Solution:

$$x = (1/2u_2 + u_3) + s_1(u_1)$$

• Let y be a particular solution to the above linear system. What is $[y]_B$?

Solution:

(0, 1/2, 1, 0)