$\begin{array}{c} \text{Math 340 Summer '18} \\ \text{Midterm} \\ 2018\text{-}07\text{-}20 \end{array}$

Name:		
Student ID Number:		

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

- \bullet There are 5 problems on this exam. Be sure you have all 5 problems on your exam.
- All vector spaces are defined over a field F which you can take to be ${\bf R}$ or ${\bf C}$.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

- 1. (10 points) Determine whether the following is True or False. You do not need to justify your answer. Write T for True and F for False.
 - (a) $__$ If S is a spanning subset of V then any subset of S also spans V.

(b) $\underline{\hspace{1cm}}$ A linear transformation $T: V \to W$ is one-to-one if and only if the nullity of T is 0.

(c) ____ If $T: V \to W$ is a linear transformation between infinite dimensional spaces, then N(T) must also be infinite dimensional.

(d) ____ A linear transformation $T: V \to W$ is one-to-one if and only if T(0) = 0.

(e) Let $T: P_2(\mathbf{R}) \to \mathbf{R}^2$ be a linear map with the property T(1) = (1,2), T(x) = (-1,1), and $T(x^2) = (0,1)$. Then $T(2x^2 + 1) = (1,4)$.

2. (10 points) Let $T: P_2(\mathbf{R}) \to \mathbf{R}^2$ be a linear transformation (you may assume this) given by

$$T(p) = (p(1), p'(1)).$$

So the first component of T(p) is p evaluated at 1 and the second component is the derivative of p evaluated at 1. Let $\alpha = \{1, x, x^2\}$ be an ordered basis for $P_2(\mathbf{R})$ and $\beta = \{(1, 0), (0, 1/2)\}$ be an ordered basis for \mathbf{R}^2 .

(a) What is $[T]^{\beta}_{\alpha}$?

(b) Prove that T is onto without using a pivot argument.

(c) What is the nullity of T?

3. (10 points) Let $T:V\to W$ be a linear transformation between vector spaces V and W. Let W_1 be a subspace of W. Prove that $S=\{v\in V:T(v)\in W_1\}$ is a subspace of V.

4. (10 points) Let $T: V \to W$ be a linear transformation between vector spaces V and W. Prove that T is onto if and only, T(S) spans W for any spanning subset S of V.

- 5. (10 points) Let X, Y, Z be finite dimensional vector spaces. Let $T: X \to Y$ and $S: Y \to Z$ be linear transformations so that
 - \bullet T is one-to-one,
 - \bullet S is onto,
 - R(T) = N(S).

Prove that $\dim Y = \dim X + \dim Z$.