Math 340 Summer '18 Midterm 2018-07-20

KEY

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

- ullet There are 5 problems on this exam. Be sure you have all 5 problems on your exam.
- All vector spaces are defined over a field F which you can take to be ${\bf R}$ or ${\bf C}.$
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

- 1. (10 points) Determine whether the following is True or False. You do not need to justify your answer. Write T for True and F for False.
 - (a) \mathbf{F} If S is a spanning subset of V then any subset of S also spans V.

(b) $\underline{\mathbf{T}}$ A linear transformation $T: V \to W$ is one-to-one if and only if the nullity of T is 0.

(c) $\underline{\mathbf{F}}$ If $T:V\to W$ is a linear transformation between infinite dimensional spaces, then N(T) must also be infinite dimensional.

(d) **F** A linear transformation $T: V \to W$ is one-to-one if and only if T(0) = 0.

(e) $\underline{\mathbf{T}}$ Let $T: P_2(\mathbf{R}) \to \mathbf{R}^2$ be a linear map with the property T(1) = (1, 2), T(x) = (-1, 1), and $T(x^2) = (0, 1)$. Then $T(2x^2 + 1) = (1, 4)$.

2. (10 points) Let $T: P_2(\mathbf{R}) \to \mathbf{R}^2$ be a linear transformation (you may assume this) given by

$$T(p) = (p(1), p'(1)).$$

So the first component of T(p) is p evaluated at 1 and the second component is the derivative of p evaluated at 1. Let $\alpha = \{1, x, x^2\}$ be an ordered basis for $P_2(\mathbf{R})$ and $\beta = \{(1, 0), (0, 1/2)\}$ be an ordered basis for \mathbf{R}^2 .

(a) What is $[T]^{\beta}_{\alpha}$?

Solution: We first compute T(1) = (1,0), T(x) = (1,1), and $T(x^2) = (1,2)$. Since (a,b) = a(1,0) + 2b(0,1/2), we know that $[(a,b)]^{\beta} = (a,2b)$. Putting all this together,

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \end{bmatrix}$$

(b) Prove that T is onto without using a pivot argument.

Solution: Using the last part, T(1) = (1,0) and T(x) = (1,1). Since (1,0) and (1,1) spans the codomain \mathbb{R}^2 , the range of T contains a spanning set so T is onto.

(c) What is the nullity of T?

Solution: By the rank-nullity theorem, dim $P_2 = \text{rank}(T) + \text{nullity}(T)$. We know that dim $P_2 = 3$. From the last part, rank(T) = 2. Therefore, nullity(T) = 1.

3. (10 points) Let $T: V \to W$ be a linear transformation between vector spaces V and W. Let W_1 be a subspace of W. Prove that $S = \{v \in V : T(v) \in W_1\}$ is a subspace of V.

Solution: We proceed by checking the 3 properties:

- Since $T(0) = 0 \in W_1$, we know that $0 \in S$.
- Suppose $x, y \in S$. Since T is linear, T(x+y) = T(x) + T(y). Since $x, y \in S$, we know that $T(x) \in W_1$ and $T(y) \in W_1$. Because W_1 is a subspace, $T(x) + T(y) \in W_1$ so $T(x+y) = T(x) + T(y) \in W_1$. This means $x + y \in S$.
- Suppose $x \in S$ and $c \in F$. Since T is linear, T(cx) = cT(x). Since $x \in S$, we know $T(x) \in W_1$. Because W_1 is a subspace, $cT(x) \in W_1$ so $T(cx) = cT(x) \in W_1$. This means $cx \in S$.

4. (10 points) Let $T: V \to W$ be a linear transformation between vector spaces V and W. Prove that T is onto if and only, T(S) spans W for any spanning subset S of V.

Solution: First suppose T is onto. Let S be any spanning subset of V. We wish to show T(S) spans W. Let $w \in W$. Since T is onto, there exists a v such that T(v) = w. Since S is spanning, there exists $a_1, \ldots, a_n \in F$ and $s_1, \ldots, s_n \in S$ such that

$$v = a_1 s_1 + \dots + a_n s_n.$$

By applying T and both sides and using linearity of T,

$$w = T(v) = a_1 T(s_1) + \dots + a_n T(s_n).$$

Hence, $w \in \operatorname{span} T(S)$. Therefore, T(S) spans W.

Conversely, suppose T(S) spans W for any spanning subset S of V. In particular, this means that T(V) is spanning. So span T(V) = W. But T(V) is subspace so it is equal to its span. Hence, $T(V) = \operatorname{span} T(V) = W$, which implies T is onto.

- 5. (10 points) Let X, Y, Z be finite dimensional vector spaces. Let $T: X \to Y$ and $S: Y \to Z$ be linear transformations so that
 - T is one-to-one,
 - S is onto,
 - R(T) = N(S).

Prove that $\dim Y = \dim X + \dim Z$.

Solution: We see 2 linear transformations. We see information about their rank and nullity. We see the word dimension 3 times in an equality. We strongly suspect the usage of the rank-nullity theorem.

By the rank-nullity theorem applied to S, $\dim Y = \operatorname{rank} S + \operatorname{nullity} S$. Since S is onto, $\operatorname{rank} S = \dim Z$. Because N(S) = R(T), $\operatorname{nullity} S = \operatorname{rank} T$. Since T is one-to-one, $\operatorname{nullity} T = 0$, so $\operatorname{rank-nullity} I$ implies $\dim X = \operatorname{rank} I$. Putting all of this together, we deduce that $\dim Y = \dim X + \dim Z$.