January 8

2.1 Vectors

A vector is a list of number with addition and scalar multiplication defined. Given vectors u = (u1, u2, …, un) ∈ ℝn, v = (v1, v2, …, vn) ∈ ℝn of equal dimension and a scalar c ∈ ℝ, we define * addition: u + v = (u1 + v1, u2 + v2, …, un + vn), * scalar multiplication: cu = (cu1, cu2, …, cun).

go over the geometry in class. tail to tip, parallelogram

Let a, b be scalars and u, v, w ∈ ℝn. Then

Definition: The If u1, u2, …, um are vectors and c1, c2, …, cm are scalars, then
c1u1 + c2u2 + … + cmum
is a linear combination of u1, …, um. Note that the constants can be negative or zero.