MAS 5145 Matrix Theory Final and Comp Prep

Philip Hurst

December 12, 2017

Contents

1 Definitions 2
1.1 Eigenvalues and Eigenvectors 2
1.2 Characteristic Polynomial 2
1.3 Algebraic Multiplicity 2
1.4 Geometric Multiplicity 2
1.5 Similar and Unitarily Similar 2
1.6 Diagonalizable Matrix 2
1.7 Orthogonal and Unitary 2
1.8 Minimal Polynomial 2
1.9 Symmetric/Hermitian/Skew-symmetric/Skew-hermitian/Normal 2
1.10 Positive Definite and Semi-Definite 3
1.11 Singular Values 3
1.12 Trace 3
2 Proofs of Key Results 4
2.1 Hermitian/Skew-hermitian matrix eigenvalues are real/purely imaginary 4
2.2 Unitary matrix eigenvalues have absolute value 1 5
2.3 Eigenvectors belonging to distinct eigenvalues are linearly independent 5
2.4 Eigenvectors for distinct eigenvalues of a hermitian matrix are orthogonal 5
2.5 Trace of a matrix $=$ Sum of its eigenvalues 5
2.6 Gershgorin disc theorem part (a) 6
2.7 Results pertaining to positive definite matrices 7
2.8 Min poly divides every annihilating polynomial 7
2.9 Roots of the min poly are precisely the eigenvalues of the matrix 7
2.10 Hermitian matrix is Positive Definite if and only if all its eigenvalues are positive 7
2.11 $\operatorname{Trace}\left(A^{*} A\right)=$ sum of square of moduli of eigenvalues of A when A is normal 7
3 Statements of Theorems 8
3.1 Schur's Upper Triangularization Theorem 8
3.2 Cayley-Hamilton Theorem 8
3.3 Gershgorin Disc Theorem (include radii, discs, and region) 8
3.4 Necessary and sufficient conditions for the diagonalizability of a matrix 8
3.5 Significant of a matrix being normal (A is normal iff A is unitarily diagonalizable) 8
4 Problems - LOOK AT CLASS NOTES TOO 8
4.1 Proof Type Problems 8
4.2 Computational Problems 8

1 Definitions

1.1 Eigenvalues and Eigenvectors

Let A be $n \times n$.
The scalar λ is said to be an eigenvalue of A if there is a non-zero vector \underline{x} such that $A \underline{x}=\lambda \underline{x}$. Such a vector \underline{x} is called an eigenvector of A belonging to the eigenvalue λ.

1.2 Characteristic Polynomial

Let A be $n \times n$.
The polynomial calculuated by $\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial. Its roots are the eigenvalues of A.

1.3 Algebraic Multiplicity

Let A be $n \times n$ and λ be an eigenvalue of A.
The algebraic multiplicity of λ is the number of times λ appears as a root of the char. poly. of A.

1.4 Geometric Multiplicity

Let A be $n \times n$ and λ be an eigenvalue of A.
The geometric multiplicity of λ is the dimension of the eigenspace of λ.
This is the same as the number of linearly independent eigenvectors belonging to λ.

1.5 Similar and Unitarily Similar

Let A and B be $n \times n$.
B is said to be similar to A if there exists an invertible matrix S so that $S^{-1} A S=B$.
A and B are unitarily similar if P is a unitary matrix (i.e. $P P^{*}=P^{*} P=I$).

1.6 Diagonalizable Matrix

Let A be $n \times n$.
A is said to be diagonalizable if A is similar to a diagonal matrix.
There is an invertible matrix S such that $S^{-1} A S=D$ is diagonal.

1.7 Orthogonal and Unitary

A real matrix Q is an orthogonal matrix if $Q Q^{T}=Q^{T} Q=I$.
A complex matrix U is a unitary matrix if $U U^{*}=U^{*} U=I$.

1.8 Minimal Polynomial

Let A be $n \times n$.
The minimal polynomial of A is the monic (i.e. coefficient of highest powered x in $p(x)$ is 1) polynomial of least degree that annihilates the matrix A.

$$
\begin{aligned}
\text { 1.9 } & \text { Symmetric/Hermitian/Skew-symmetric/Skew-hermitian/Normal } \\
\text { symmetric } & \Leftrightarrow A=A^{T} \\
\text { hermitian } & \Leftrightarrow A=A^{*} \\
\text { skew-symmetric } & \Leftrightarrow A=-A^{T} \\
\text { skew-hermitian } & \Leftrightarrow A=-A^{*} \\
\text { normal } & \Leftrightarrow A A^{*}=A^{*} A \Leftrightarrow \text { exists unitary } U \text { s.t. } U A U^{-1} \text { is diagonal }
\end{aligned}
$$

1.10 Positive Definite and Semi-Definite

Let A be hermitian.
If $\underline{x}^{*} A \underline{x}>0$ for all $\underline{x} \neq 0$ then A is positive definite.
If $\underline{x}^{*} A \underline{x} \geq 0$ for all $\underline{x} \neq 0$ then A is positive semi-definite.

1.11 Singular Values

Let A be $n \times n$.
The singular values of A are the square roots of the eigenvalues of $A^{*} A$.
The singular value decomposition of A is given as $A=U D V^{*}$, where U, V are unitary and D is a diagonal matrix whose elements are the singular values.

1.12 Trace

The trace of a matrix is the sum of its diagonal elements and the sum of its eigenvalues.

2 Proofs of Key Results

2.1 Hermitian/Skew-hermitian matrix eigenvalues are real/purely imaginary

If A is a hermitian matrix, then every eigenvalue of A is real.
Let A be a hermitian matrix (i.e. $\left.A=A^{*}\right), \underline{x}$ be an eigenvector belonging to λ, and $\underline{x} \neq 0$.

$$
\begin{aligned}
\text { Then } A \underline{x} & =\lambda \underline{x} \\
\underline{x}^{*} A \underline{x} & =\underline{x}^{*}(\underline{\lambda}) \\
\left(\underline{x}^{*} A\right) \underline{x} & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
\left(\underline{x}^{*} A\right) \underline{x} & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
\left(A^{*} \underline{x}^{*} \underline{x}\right. & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
(A \underline{x})^{*} \underline{x} & =\lambda\left(\underline{x}^{*} \underline{x}\right) \quad \text { because } A=A^{*} \\
(\lambda \underline{x})^{*} \underline{x} & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
\bar{\lambda}\left(\underline{x}^{*} \underline{x}\right) & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
(\bar{\lambda}-\lambda) \underline{x}^{*} \underline{x} & =0
\end{aligned}
$$

We can see that $\underline{x}^{*} \underline{x}=\|\underline{x}\|^{2}>0$ since $\underline{x} \neq 0$. Hence $(\bar{\lambda}-\lambda)=0$.
Let $\lambda=a+i b$ and $\bar{\lambda}=a-i b$ for $a, b \in \mathbb{R}$. So $(\bar{\lambda}-\lambda)=a-i b-(a+i b)=-2 i b=0$. This implies that $b=0$ and therefore λ is a real number.

If A is a skew-hermitian matrix, then every eigenvalue of A is purely imaginary.
Let A be a skew-hermitian matrix (i.e. $A=-A^{*}$), \underline{x} be an eigenvector belonging to λ, and $\underline{x} \neq 0$.

$$
\begin{aligned}
\text { Then } A \underline{x} & =\lambda \underline{x} \\
\underline{x}^{*} A \underline{x} & =\underline{x}^{*}(\lambda \underline{x}) \\
\left(\underline{x}^{*} A\right) \underline{x} & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
\left(\underline{x}^{*} A\right) \underline{x} & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
\left(A^{*} \underline{x}\right)^{*} \underline{x} & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
(-A \underline{x})^{*} \underline{x} & =\lambda\left(\underline{x}^{*} \underline{x}\right) \quad \text { because } A=-A^{*} \\
(-\lambda \underline{x})^{*} \underline{x} & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
-\bar{\lambda}\left(\underline{x}^{*} \underline{x}\right) & =\lambda\left(\underline{x}^{*} \underline{x}\right) \\
(\bar{\lambda}+\lambda) \underline{x}^{*} \underline{x} & =0
\end{aligned}
$$

We can see that $\underline{x}^{*} \underline{x}=\|\underline{x}\|^{2}>0$ since $\underline{x} \neq 0$. Hence $(\bar{\lambda}+\lambda)=0$.
Let $\lambda=a+i b$ and $\bar{\lambda}=a-i b$ for $a, b \in \mathbb{R}$. So $(\bar{\lambda}+\lambda)=a-i b+(a+i b)=2 a=0$. This implies that $a=0$ and therefore λ is purely imaginary.

2.2 Unitary matrix eigenvalues have absolute value 1

Let A be a unitary matrix (so $A A^{*}=A^{*} A=I$) with eigenvalue λ.
Then for any vector $\underline{x} \neq 0$, we have

$$
\begin{aligned}
A \underline{x} & =\lambda \underline{x} \text { and } \\
\underline{x}^{*} A^{*} & =\lambda^{*} \underline{x}^{*} \Rightarrow \\
\underline{x}^{*} A^{*} A \underline{x} & =\lambda^{*} \underline{x}^{*} \lambda \underline{x} \Rightarrow \\
\underline{x}^{*} \underline{x} & =\lambda^{*} \lambda \underline{x}^{*} \underline{x} \Rightarrow \\
\|\underline{x}\|^{2} & =|\lambda|^{2}\|\underline{x}\|^{2} \Rightarrow \\
|\lambda| & =1 \quad \square
\end{aligned}
$$

2.3 Eigenvectors belonging to distinct eigenvalues are linearly independent

Suppose $c_{1} \underline{x}_{1}+c_{2} \underline{x}_{2}=0$, where one of the coefficients (say c_{1}) is not zero. Then $\underline{x}_{1}=\alpha \underline{x}_{2}$ for some $\alpha \neq 0$. Left multiplying both sides by A gives

$$
A \underline{x}_{1}=\lambda_{1} \underline{x}_{1}=\alpha A \underline{x}_{2}=\alpha \lambda_{2} \underline{x}_{2}
$$

But multiplying $\underline{x}_{1}=\alpha \underline{x}_{2}$ by λ_{1} also gives

$$
A \underline{x}_{1}=\lambda_{1} \underline{x}_{1}=\alpha \lambda_{1} \underline{x}_{2}
$$

Subtracting these equations gives

$$
\alpha \lambda_{2} \underline{x}_{2}-\alpha \lambda_{1} \underline{x}_{2}=\alpha\left(\lambda_{2}-\lambda_{1}\right) \underline{x}_{2}=\underline{0}
$$

But we know that $\alpha \neq 0$ and $\lambda_{2}-\lambda_{1} \neq 0$ and $\underline{x}_{2} \neq \underline{0}$.
Thus our assumption that the coefficients c_{1} and c_{2} are not zero is incorrect and \underline{x}_{1} and \underline{x}_{2} are linearly independent.
The can easily be extended for the \underline{x}_{n} case.

2.4 Eigenvectors for distinct eigenvalues of a hermitian matrix are orthogonal

Let A be an $n \times n$ Hermitian matrix, λ_{1}, λ_{2} distinct eigenvalues of A, and $\underline{x}_{1}, \underline{x}_{2}$ eigenvectors belonging to respectively λ_{1}, λ_{2}. We will show that \underline{x}_{1} and \underline{x}_{2} are orthogonal.

Since A is hermitian, we know these eigenvalues are real.
We can calculate $<\underline{x}_{1}, A \underline{x}_{2}>$ in two ways:

$$
\begin{aligned}
& <\underline{x}_{1}, A \underline{x}_{2}>=\underline{x}_{1}^{*} A \underline{x}_{2}=\left(\underline{x}_{1}^{*} A\right) \underline{x}_{2}=\left(A^{*} \underline{x}_{1}\right)^{*} \underline{x}_{2}=\left(A \underline{x}_{1}\right)^{*} \underline{x}_{2}=\left(\lambda 1 \underline{x}^{*} \underline{x}_{2}=\overline{\lambda_{1}} \underline{x}_{1}^{*} \underline{x}_{2}=\overline{\lambda_{1}}<\underline{x}_{1}, \underline{x}_{2}>\right. \\
& <\underline{x}_{1}, A \underline{x}_{2}>=\underline{x}_{1}^{*} A \underline{x}_{2}=\underline{x}_{1}^{*} \lambda_{2} \underline{x}_{2}=\lambda_{2} \underline{x}_{1}^{*} \underline{x}_{2}=\lambda_{2}<\underline{x}_{1}, \underline{x}_{2}>
\end{aligned}
$$

We then set these two results equal.

$$
\overline{\lambda_{1}}<\underline{x}_{1}, \underline{x}_{2}>=\lambda_{2}<\underline{x}_{1}, \underline{x}_{2}>\Rightarrow\left(\overline{\lambda_{1}}-\lambda_{2}\right)<\underline{x}_{1}, \underline{x}_{2}>=0
$$

Since λ_{1} and λ_{2} are real we know that $\overline{\lambda_{1}}=\lambda_{1} \neq \lambda_{2}$, so $<\underline{x}_{1}, \underline{x}_{2}>$ must be zero. Therefore \underline{x}_{1} and \underline{x}_{2} are orthogonal.
This can easily be extended to the \underline{x}_{n} case.

2.5 Trace of a matrix $=$ Sum of its eigenvalues

For every square matrix A there is a nonsingular P such that $A=P J P^{-1}$ where J is upper tringular with its eigenvalues on the diagonals.

We know that $\operatorname{trace}(A)=\operatorname{trace}\left(P J P^{-1}\right)=\operatorname{trace}\left(P P^{-1} J\right)=\operatorname{trace}(J)$.

2.6 Gershgorin disc theorem part (a)

Let A is an $n \times n$ matrix.
Define the Gershgorin Radii as $R_{i}^{\prime}=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|$.
and the Gershgorin Disc as $D_{i}=\left\{z\left|z \in \mathbb{C},\left|z-a_{i i}\right| \leq R_{i}^{\prime}\right\}\right.$
and the Gershgorin Region as $G=\bigcup_{i=1}^{n} D_{i}$.
(a) Every eigenvalue of A is in the Gershgorin disc
(b) If the union of k of the discs is disjoint from the remaining $n-k$ discs, the there are exactly k eigenvalues (counting multiplicity) in the union of the k discs.

Proof of (a): Let λ be an eigenvalue of A and $\underline{x} \neq \underline{0}$ be an eigenvector belonging to λ.
So $A \underline{x}=\lambda \underline{x}$ for $\underline{x} \in \mathbb{C}^{n}$. Let $\left|\underline{x}_{p}\right|=\max \left(\left|\underline{x}_{1}\right|, \ldots,\left|\underline{x}_{n}\right|\right)$ and we look at the p-th entries of $A \underline{x}$ and $\lambda \underline{x}$.

$$
\begin{aligned}
&(A \underline{x})_{p}=\lambda \underline{x}_{p} \Rightarrow \\
& \sum_{j=1}^{n} a_{p j} x_{j}=\lambda \underline{x}_{p} \Rightarrow \\
& a_{p p} \underline{x}_{p}+\sum_{\substack{j=1 \\
j \neq p}}^{n} a_{p j} x_{j}=\lambda \underline{x}_{p} \Rightarrow \\
&\left(\lambda-a_{p p}\right) \underline{x}_{p}=\sum_{\substack{j=1 \\
j \neq p}}^{n} a_{p j} x_{j} \Rightarrow \\
&\left|\left(\lambda-a_{p p}\right) \underline{x}_{p}\right|=\left|\sum_{\substack{j=1 \\
j \neq p}}^{n} a_{p j} x_{j}\right| \Rightarrow \\
&\left|\left(\lambda-a_{p p}\right)\right|\left|\underline{x}_{p}\right|=\left|\begin{array}{c}
\substack{j=1 \\
j \neq p} \\
n
\end{array} a_{p j} x_{j}\right| \Rightarrow \\
&\left|\left(\lambda-a_{p p}\right)\right|\left|\underline{x}_{p}\right| \leq \sum_{\substack{j=1 \\
j \neq p}}^{n}\left|a_{p j}\right|\left|x_{j}\right| \Rightarrow \\
&\left|\left(\lambda-a_{p p}\right)\right|\left|\underline{x}_{p}\right| \leq \sum_{\substack{j=1 \\
j \neq p}}^{n}\left|a_{p j}\right|\left|x_{p}\right| \quad \text { since }\left|x_{i}\right| \leq\left|x_{p}\right| \forall i \\
&\left|\left(\lambda-a_{p p}\right)\right| \leq \sum_{\substack{j=1 \\
j \neq p}}^{n}\left|a_{p j}\right|=R_{p}^{\prime} \quad \text { since }\left|x_{p}\right|>0
\end{aligned}
$$

$\therefore \lambda$ lies in $D_{p} \leq G$

2.7 Results pertaining to positive definite matrices

2.8 Min poly divides every annihilating polynomial

Let A be $n \times n$ and let $p(x)$ annihilate A. Then the minimal polynomial, $m(x)$ is a factor of $p(x)$.
From the Euclidean algorithm we know that $p(x)=q(x) m(x)+r(x)$.
Substituting $x=A$ gives us

$$
\begin{aligned}
p(A) & =q(A) m(A)+r(A) \\
0 & =q(A) 0+r(A)
\end{aligned}
$$

Therefore $r(A)=0$ and we conclude that $m(x)$ divides $p(x)$.

2.9 Roots of the min poly are precisely the eigenvalues of the matrix

We know that $C_{A}(x)$ annihilates A and therefore $m_{A}(x)$ is a factor of $C_{A}(x)$.
We also know that the only roots of $C_{A}(x)$ are the eigenvalues of A. Therefore, every root of $m_{A}(x)$ is also an eigenvalue of A.

2.10 Hermitian matrix is Positive Definite if and only if all its eigenvalues are positive

(\Rightarrow) Let A be positive definite and λ be an eigenvalue of A.

$$
\begin{aligned}
A \underline{x} & =\lambda \underline{x} \Rightarrow \\
\underline{x}^{*} A \underline{x} & =\lambda \underline{x}^{*} \underline{x}=\lambda\|\underline{x}\|^{2} \Rightarrow \\
\lambda & =\frac{\underline{x}^{*} A \underline{x}}{\|\underline{x}\|^{2}}>0 \quad \square
\end{aligned}
$$

(\Leftarrow) Let A be hermitian and let all its eigenvalues be positive.
Since A is hermitian there exists unitary U such that $U^{*} A U=D$ where D is a diagonal matrix composed of the eigenvalues of A.

We want to show that $\underline{x}^{*} A \underline{x}=\underline{x}^{*} U D U^{*} \underline{x}$ for all $\underline{x} \neq \underline{0}$.
Let $U^{*} \underline{x}=\underline{y}=\left[y_{1} \ldots y_{n}\right]^{T}$. Since $\underline{x} \neq \underline{0}$, we know $U^{*} \underline{x} \neq \underline{0}$.
So $\underline{x}^{*} U D U^{*} \underline{x}=\underline{y}^{*} D \underline{y}=\left[\bar{y}_{1} \ldots \bar{y}_{n}\right]\left[\begin{array}{c}\lambda_{1} y_{1} \\ \vdots \\ \lambda_{n} y_{n}\end{array}\right]=\lambda_{1}\left|y_{1}\right|^{2}+\ldots+\lambda_{n}\left|y_{n}\right|^{2}>0$ because $\lambda_{i}>0$ and at least one $y_{i} \neq 0$.
Thus $\underline{x}^{*} A \underline{x}>0$ and A is positive definite.

2.11 Trace $\left(A^{*} A\right)=$ sum of square of moduli of eigenvalues of A when A is normal

Since A is normal, there exists unitary diagonalizable matrix U such that $U^{*} A U=D$ is diagonal with the eigenvalues of A.

We can write $A^{*} A=U A U^{*} U A^{*} U^{*}=U D^{*} D U^{*}$.
So $\operatorname{trace}\left(A^{*} A\right)=\operatorname{trace}\left(U D^{*} D U^{*}\right)=\operatorname{trace}\left(U U^{*} D^{*} D\right)=\operatorname{trace}\left(I D^{*} D\right)=\operatorname{trace}\left(D^{*} D\right)$.
$D^{*} D=\operatorname{diag}\left(\lambda_{1} \overline{\lambda_{1}}, \ldots, \lambda_{n} \overline{\lambda_{n}}\right)$ which means the trace is the sum of square modulii of the eigenvalues of A.

3 Statements of Theorems

3.1 Schur's Upper Triangularization Theorem

Let A be $n \times n$ over \mathbb{F}. Then there exists a unitary matrix U such that $U^{*} A U=T$ is upper triangular.
The eigenvalues of A are the diagonal entries of T.
If A is real and all eigenvalues of A are real, then U can be chosen to be real orthogonal.

3.2 Cayley-Hamilton Theorem

The characteristic polynomial of an $n \times n$ matrix A annihilates A.

3.3 Gershgorin Disc Theorem (include radii, discs, and region)

Let A is an $n \times n$ matrix.
Define the Gershgorin Radii as $R_{i}^{\prime}=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|$.
and the Gershgorin Disc as $D_{i}=\left\{z\left|z \in \mathbb{C},\left|z-a_{i i}\right| \leq R_{i}^{\prime}\right\}\right.$
and the Gershgorin Region as $G=\bigcup_{i=1}^{n} D_{i}$.
(a) Every eigenvalue of A is in the Gershgorin disc
(b) If the union of k of the discs is disjoint from the remaining $n-k$ discs, the there are exactly k eigenvalues (counting multiplicity) in the union of the k discs.

3.4 Necessary and sufficient conditions for the diagonalizability of a matrix

3.5 Significant of a matrix being normal (A is normal iff A is unitarily diagonalizable)

4 Problems - LOOK AT CLASS NOTES TOO

4.1 Proof Type Problems

Similar to those on problem sets, homework assignments, class tests, and those done in class.

4.2 Computational Problems

1. Finding eivenvalues/bases for eigenspaces
2. Illustrating Schur's Theorem
3. Applying the Cayley-Hamilton Theorem
4. Eigenvalues of polynomials of a matrix
5. Computing singular values and related computations
6. Jordan Canonical Form and related problems (e.g. J form ofthe power of a J-block)
7. Gershgorin discs
8. Computing singular values and related matters
9. Eigenvalues of a polynomials of a matrix
