MAS 5145 Matrix Theory Final and Comp Prep

Philip Hurst

December 12, 2017

Contents

1	Defi	nitions	2
	1.1	Eigenvalues and Eigenvectors	2
	1.2	Characteristic Polynomial	2
	1.3	Algebraic Multiplicity	2
	1.4	Geometric Multiplicity	2
	1.5	Similar and Unitarily Similar	2
	1.6	Diagonalizable Matrix	2
	1.7	Orthogonal and Unitary	2
	1.8	Minimal Polynomial	2
	1.9	Symmetric/Hermitian/Skew-symmetric/Skew-hermitian/Normal	2
	1.10	Positive Definite and Semi-Definite	3
	1.11	Singular Values	3
	1.12	Trace	3
2	Proc	ofs of Key Results	4
	2.1	Hermitian/Skew-hermitian matrix eigenvalues are real/purely imaginary	4
	2.2	Unitary matrix eigenvalues have absolute value 1	5
	2.3	Eigenvectors belonging to distinct eigenvalues are linearly independent	5
	2.4	Eigenvectors for distinct eigenvalues of a hermitian matrix are orthogonal	5
	2.5	Trace of a matrix = Sum of its eigenvalues \ldots	5
	2.6	Gershgorin disc theorem part (a)	6
	2.7	Results pertaining to positive definite matrices	7
	2.8	Min poly divides every annihilating polynomial	$\overline{7}$
	2.9	Roots of the min poly are precisely the eigenvalues of the matrix	$\overline{7}$
	2.10	Hermitian matrix is Positive Definite if and only if all its eigenvalues are positive	$\overline{7}$
	2.11	$\operatorname{Trace}(A^*A) = \operatorname{sum}$ of square of moduli of eigenvalues of A when A is normal	$\overline{7}$
3	State	ements of Theorems	8
	3.1	Schur's Upper Triangularization Theorem	8
	3.2	Cayley-Hamilton Theorem	8
	3.3	Gershgorin Disc Theorem (include radii, discs, and region)	8
	3.4	Necessary and sufficient conditions for the diagonalizability of a matrix	8
	3.5	Significant of a matrix being normal (A is normal iff A is unitarily diagonalizable) $\ldots \ldots \ldots \ldots$	8
	ית		0
4	Prot	DIEMS - LUUK AT ULASS NUTES TUU	8
	4.1	Proof Type Problems	8
	4.2	Computational Problems	8

1 Definitions

1.1 Eigenvalues and Eigenvectors

Let A be $n \times n$.

The scalar λ is said to be an eigenvalue of A if there is a non-zero vector \underline{x} such that $A\underline{x} = \lambda \underline{x}$. Such a vector \underline{x} is called an eigenvector of A belonging to the eigenvalue λ .

1.2 Characteristic Polynomial

Let A be $n \times n$. The polynomial calculated by $\det(A - \lambda I)$ is called the <u>characteristic polynomial</u>. Its roots are the eigenvalues of A.

1.3 Algebraic Multiplicity

Let A be $n \times n$ and λ be an eigenvalue of A. The algebraic multiplicity of λ is the number of times λ appears as a root of the char. poly. of A.

1.4 Geometric Multiplicity

Let A be $n \times n$ and λ be an eigenvalue of A. The geometric multiplicity of λ is the dimension of the eigenspace of λ . This is the same as the number of linearly independent eigenvectors belonging to λ .

1.5 Similar and Unitarily Similar

Let A and B be $n \times n$.

B is said to be <u>similar</u> to *A* if there exists an invertible matrix *S* so that $S^{-1}AS = B$. *A* and *B* are unitarily similar if *P* is a unitary matrix (i.e. $PP^* = P^*P = I$).

1.6 Diagonalizable Matrix

Let A be $n \times n$. A is said to be <u>diagonalizable</u> if A is similar to a diagonal matrix. There is an invertible matrix S such that $S^{-1}AS = D$ is diagonal.

1.7 Orthogonal and Unitary

A real matrix Q is an orthogonal matrix if $QQ^T = Q^TQ = I$. A complex matrix U is a unitary matrix if $UU^* = U^*U = I$.

1.8 Minimal Polynomial

Let A be $n \times n$.

The minimal polynomial of A is the monic (i.e. coefficient of highest powered x in p(x) is 1) polynomial of least degree that annihilates the matrix A.

1.9 Symmetric/Hermitian/Skew-symmetric/Skew-hermitian/Normal

1.10 Positive Definite and Semi-Definite

Let A be hermitian. If $\underline{x}^*A\underline{x} > 0$ for all $\underline{x} \neq 0$ then A is positive definite. If $\underline{x}^*A\underline{x} \ge 0$ for all $\underline{x} \neq 0$ then A is positive semi-definite.

1.11 Singular Values

Let A be $n \times n$.

The singular values of A are the square roots of the eigenvalues of A^*A .

The singular value decomposition of A is given as $A = UDV^*$, where U, V are unitary and D is a diagonal matrix whose elements are the singular values.

1.12 Trace

The <u>trace</u> of a matrix is the sum of its diagonal elements and the sum of its eigenvalues.

2 Proofs of Key Results

2.1 Hermitian/Skew-hermitian matrix eigenvalues are real/purely imaginary

If A is a hermitian matrix, then every eigenvalue of A is real.

Let A be a hermitian matrix (i.e. $A = A^*$), \underline{x} be an eigenvector belonging to λ , and $\underline{x} \neq 0$.

Then
$$A\underline{x} = \lambda \underline{x}$$

 $\underline{x}^* A \underline{x} = \underline{x}^* (\lambda \underline{x})$
 $(\underline{x}^* A) \underline{x} = \lambda (\underline{x}^* \underline{x})$
 $(\underline{x}^* A) \underline{x} = \lambda (\underline{x}^* \underline{x})$
 $(A^* \underline{x})^* \underline{x} = \lambda (\underline{x}^* \underline{x})$
 $(A\underline{x})^* \underline{x} = \lambda (\underline{x}^* \underline{x})$ because $A = A^*$
 $(\lambda \underline{x})^* \underline{x} = \lambda (\underline{x}^* \underline{x})$
 $\overline{\lambda} (\underline{x}^* \underline{x}) = \lambda (\underline{x}^* \underline{x})$
 $(\overline{\lambda} - \lambda) \underline{x}^* \underline{x} = 0$

We can see that $\underline{x}^* \underline{x} = ||\underline{x}||^2 > 0$ since $\underline{x} \neq 0$. Hence $(\overline{\lambda} - \lambda) = 0$.

Let $\lambda = a + ib$ and $\overline{\lambda} = a - ib$ for $a, b \in \mathbb{R}$. So $(\overline{\lambda} - \lambda) = a - ib - (a + ib) = -2ib = 0$. This implies that b = 0 and therefore λ is a real number.

If A is a skew-hermitian matrix, then every eigenvalue of A is purely imaginary.

Let A be a skew-hermitian matrix (i.e. $A = -A^*$), \underline{x} be an eigenvector belonging to λ , and $\underline{x} \neq 0$.

Then
$$A\underline{x} = \lambda \underline{x}$$

 $\underline{x}^* A \underline{x} = \underline{x}^* (\lambda \underline{x})$
 $(\underline{x}^* A) \underline{x} = \lambda(\underline{x}^* \underline{x})$
 $(\underline{x}^* A) \underline{x} = \lambda(\underline{x}^* \underline{x})$
 $(A^* \underline{x})^* \underline{x} = \lambda(\underline{x}^* \underline{x})$
 $(-A\underline{x})^* \underline{x} = \lambda(\underline{x}^* \underline{x})$ because $A = -A^*$
 $(-\lambda \underline{x})^* \underline{x} = \lambda(\underline{x}^* \underline{x})$
 $-\overline{\lambda}(\underline{x}^* \underline{x}) = \lambda(\underline{x}^* \underline{x})$
 $(\overline{\lambda} + \lambda) \underline{x}^* \underline{x} = 0$

We can see that $\underline{x}^* \underline{x} = ||\underline{x}||^2 > 0$ since $\underline{x} \neq 0$. Hence $(\overline{\lambda} + \lambda) = 0$.

Let $\lambda = a + ib$ and $\overline{\lambda} = a - ib$ for $a, b \in \mathbb{R}$. So $(\overline{\lambda} + \lambda) = a - ib + (a + ib) = 2a = 0$. This implies that a = 0 and therefore λ is purely imaginary.

2.2 Unitary matrix eigenvalues have absolute value 1

Let A be a unitary matrix (so $AA^* = A^*A = I$) with eigenvalue λ .

Then for any vector $\underline{x} \neq 0$, we have

$$A\underline{x} = \lambda \underline{x} \text{ and}$$

$$\underline{x}^* A^* = \lambda^* \underline{x}^* \Rightarrow$$

$$\underline{x}^* A^* A \underline{x} = \lambda^* \underline{x}^* \lambda \underline{x} \Rightarrow$$

$$\underline{x}^* \underline{x} = \lambda^* \lambda \underline{x}^* \underline{x} \Rightarrow$$

$$||\underline{x}||^2 = |\lambda|^2 ||\underline{x}||^2 \Rightarrow$$

$$|\lambda| = 1 \quad \Box$$

2.3 Eigenvectors belonging to distinct eigenvalues are linearly independent

Suppose $c_1\underline{x}_1 + c_2\underline{x}_2 = 0$, where one of the coefficients (say c_1) is not zero. Then $\underline{x}_1 = \alpha \underline{x}_2$ for some $\alpha \neq 0$. Left multiplying both sides by A gives

$$A\underline{x}_1 = \lambda_1 \underline{x}_1 = \alpha A\underline{x}_2 = \alpha \lambda_2 \underline{x}_2$$

But multiplying $\underline{x}_1 = \alpha \underline{x}_2$ by λ_1 also gives

$$A\underline{x}_1 = \lambda_1 \underline{x}_1 = \alpha \lambda_1 \underline{x}_2$$

Subtracting these equations gives

$$\alpha \lambda_2 \underline{x}_2 - \alpha \lambda_1 \underline{x}_2 = \alpha (\lambda_2 - \lambda_1) \underline{x}_2 = \underline{0}$$

But we know that $\alpha \neq 0$ and $\lambda_2 - \lambda_1 \neq 0$ and $\underline{x}_2 \neq \underline{0}$.

Thus our assumption that the coefficients c_1 and c_2 are not zero is incorrect and \underline{x}_1 and \underline{x}_2 are linearly independent.

The can easily be extended for the \underline{x}_n case.

2.4 Eigenvectors for distinct eigenvalues of a hermitian matrix are orthogonal

Let A be an $n \times n$ Hermitian matrix, λ_1, λ_2 distinct eigenvalues of A, and $\underline{x}_1, \underline{x}_2$ eigenvectors belonging to respectively λ_1, λ_2 . We will show that \underline{x}_1 and \underline{x}_2 are orthogonal.

Since A is hermitian, we know these eigenvalues are real.

We can calculate $\langle \underline{x}_1, A\underline{x}_2 \rangle$ in two ways:

$$<\underline{x}_{1}, A\underline{x}_{2}>=\underline{x}_{1}^{*}A\underline{x}_{2}=(\underline{x}_{1}^{*}A)\underline{x}_{2}=(A^{*}\underline{x}_{1})^{*}\underline{x}_{2}=(A\underline{x}_{1})^{*}\underline{x}_{2}=(\lambda_{1}\underline{x})^{*}\underline{x}_{2}=\overline{\lambda_{1}}\underline{x}_{1}^{*}\underline{x}_{2}=\overline{\lambda_{1}}<\underline{x}_{1}, \underline{x}_{2}>(A^{*}\underline{x}_{1})^{*}\underline{x}_{2}=(A^{*}\underline{x}_{1})^{*}\underline{x}$$

$$<\underline{x}_1, \underline{A}\underline{x}_2>=\underline{x}_1^*\underline{A}\underline{x}_2=\underline{x}_1^*\,\lambda_2\,\underline{x}_2=\lambda_2\,\underline{x}_1^*\,\underline{x}_2=\lambda_2\,<\underline{x}_1\,,\,\underline{x}_2>$$

We then set these two results equal.

$$\overline{\lambda_1} < \underline{x}_1, \, \underline{x}_2 > = \lambda_2 < \underline{x}_1, \, \underline{x}_2 > \quad \Rightarrow \quad \left(\overline{\lambda_1} - \lambda_2\right) < \underline{x}_1, \, \underline{x}_2 > = 0$$

Since λ_1 and λ_2 are real we know that $\overline{\lambda_1} = \lambda_1 \neq \lambda_2$, so $< \underline{x}_1$, $\underline{x}_2 > \text{must}$ be zero. Therefore \underline{x}_1 and \underline{x}_2 are orthogonal.

This can easily be extended to the \underline{x}_n case.

2.5 Trace of a matrix = Sum of its eigenvalues

For every square matrix A there is a nonsingular P such that $A = PJP^{-1}$ where J is upper tringular with its eigenvalues on the diagonals.

We know that
$$trace(A) = trace(PJP^{-1}) = trace(PP^{-1}J) = trace(J)$$
.

2.6 Gershgorin disc theorem part (a)

Let A is an $n \times n$ matrix.

Define the Gershgorin Radii as $R'_i = \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|$. and the Gershgorin Disc as $D_i = \{z | z \in \mathbb{C}, |z - a_{ii}| \le R'_i\}$ and the Gershgorin Region as $G = \bigcup_{i=1}^n D_i$. (a) Every eigenvalue of A is in the Gershgorin disc

(b) If the union of k of the discs is disjoint from the remaining n - k discs, the there are exactly k eigenvalues (counting multiplicity) in the union of the k discs.

Proof of (a): Let λ be an eigenvalue of A and $\underline{x} \neq \underline{0}$ be an eigenvector belonging to λ .

So $A\underline{x} = \lambda \underline{x}$ for $\underline{x} \in \mathbb{C}^n$. Let $|\underline{x}_p| = \max(|\underline{x}_1|, \dots, |\underline{x}_n|)$ and we look at the *p*-th entries of $A\underline{x}$ and $\lambda \underline{x}$.

$$(A\underline{x})_{p} = \lambda \underline{x}_{p} \Rightarrow$$

$$\sum_{j=1}^{n} a_{pj}x_{j} = \lambda \underline{x}_{p} \Rightarrow$$

$$a_{pp}\underline{x}_{p} + \sum_{\substack{j=1\\ j\neq p}}^{n} a_{pj}x_{j} = \lambda \underline{x}_{p} \Rightarrow$$

$$(\lambda - a_{pp})\underline{x}_{p} = \sum_{\substack{j=1\\ j\neq p}}^{n} a_{pj}x_{j} \Rightarrow$$

$$|(\lambda - a_{pp})\underline{x}_{p}| = \left|\sum_{\substack{j=1\\ j\neq p}}^{n} a_{pj}x_{j}\right| \Rightarrow$$

$$|(\lambda - a_{pp})||\underline{x}_{p}| = \left|\sum_{\substack{j=1\\ j\neq p}}^{n} a_{pj}x_{j}\right| \Rightarrow$$

$$|(\lambda - a_{pp})||\underline{x}_{p}| \leq \sum_{\substack{j=1\\ j\neq p}}^{n} |a_{pj}||x_{p}| \Rightarrow$$

$$|(\lambda - a_{pp})||\underline{x}_{p}| \leq \sum_{\substack{j=1\\ j\neq p}}^{n} |a_{pj}||x_{p}| \text{ since } |x_{i}| \leq |x_{p}| \forall i$$

$$|(\lambda - a_{pp})| \leq \sum_{\substack{j=1\\ j\neq p}}^{n} |a_{pj}| = R'_{p} \text{ since } |x_{p}| > 0$$

$$\therefore \lambda \text{ lies in } D_{p} \leq G \square$$

2.7Results pertaining to positive definite matrices

$\mathbf{2.8}$ Min poly divides every annihilating polynomial

Let A be $n \times n$ and let p(x) annihilate A. Then the minimal polynomial, m(x) is a factor of p(x).

From the Euclidean algorithm we know that p(x) = q(x) m(x) + r(x).

Substituting x = A gives us

$$p(A) = q(A) m(A) + r(A)$$
$$0 = q(A) 0 + r(A)$$

Therefore r(A) = 0 and we conclude that m(x) divides p(x).

2.9Roots of the min poly are precisely the eigenvalues of the matrix

We know that $C_A(x)$ annihilates A and therefore $m_A(x)$ is a factor of $C_A(x)$.

We also know that the only roots of $C_A(x)$ are the eigenvalues of A. Therefore, every root of $m_A(x)$ is also an eigenvalue of A.

Hermitian matrix is Positive Definite if and only if all its eigenvalues are positive 2.10

 (\Rightarrow) Let A be positive definite and λ be an eigenvalue of A.

$$A\underline{x} = \lambda \underline{x} \Rightarrow$$

$$\underline{x}^* A \underline{x} = \lambda \underline{x}^* \underline{x} = \lambda ||\underline{x}||^2 \Rightarrow$$

$$\lambda = \frac{\underline{x}^* A \underline{x}}{||\underline{x}||^2} > 0 \quad \Box$$

 (\Leftarrow) Let A be hermitian and let all its eigenvalues be positive.

Since A is hermitian there exists unitary U such that $U^*AU = D$ where D is a diagonal matrix composed of the eigenvalues of A.

We want to show that $\underline{x}^* A \underline{x} = \underline{x}^* U D U^* \underline{x}$ for all $\underline{x} \neq \underline{0}$.

Let $U^*\underline{x} = y = [y_1 \dots y_n]^T$. Since $\underline{x} \neq \underline{0}$, we know $U^*\underline{x} \neq \underline{0}$.

So
$$\underline{x}^*UDU^*\underline{x} = \underline{y}^*D\underline{y} = [\overline{y}_1 \dots \overline{y}_n] \begin{bmatrix} \lambda_1 y_1 \\ \vdots \\ \lambda_n y_n \end{bmatrix} = \lambda_1 |y_1|^2 + \dots + \lambda_n |y_n|^2 > 0$$
 because $\lambda_i > 0$ and at least one $y_i \neq 0$.
Thus $x^*Ax > 0$ and A is positive definite.

$Trace(A^*A) = sum of square of moduli of eigenvalues of A when A is normal$ 2.11

Since A is normal, there exists unitary diagonalizable matrix U such that $U^*AU = D$ is diagonal with the eigenvalues of A.

We can write $A^*A = UAU^*UA^*U^* = UD^*DU^*$.

So $trace(A^*A) = trace(UD^*DU^*) = trace(UU^*D^*D) = trace(ID^*D) = trace(D^*D)$.

 $D^*D = diag(\lambda_1 \overline{\lambda_1}, \dots, \lambda_n \overline{\lambda_n})$ which means the trace is the sum of square modulii of the eigenvalues of A.

3 Statements of Theorems

3.1 Schur's Upper Triangularization Theorem

Let A be $n \times n$ over \mathbb{F} . Then there exists a unitary matrix U such that $U^*AU = T$ is upper triangular.

The eigenvalues of A are the diagonal entries of T.

If A is real and all eigenvalues of A are real, then U can be chosen to be real orthogonal.

3.2 Cayley-Hamilton Theorem

The characteristic polynomial of an $n \times n$ matrix A annihilates A.

3.3 Gershgorin Disc Theorem (include radii, discs, and region)

Let A is an $n \times n$ matrix.

Define the Gershgorin Radii as $R'_i = \sum_{\substack{j=1\\ j\neq i}}^n |a_{ij}|.$

and the Gershgorin Disc as $D_i = \{z | z \in \mathbb{C}, |z - a_{ii}| \le R'_i\}$

and the Gershgorin Region as $G = \bigcup_{i=1}^{n} D_i$.

(a) Every eigenvalue of A is in the Gershgorin disc

(b) If the union of k of the discs is disjoint from the remaining n - k discs, the there are exactly k eigenvalues (counting multiplicity) in the union of the k discs.

3.4 Necessary and sufficient conditions for the diagonalizability of a matrix

3.5 Significant of a matrix being normal (A is normal iff A is unitarily diagonalizable)

4 Problems - LOOK AT CLASS NOTES TOO

4.1 **Proof Type Problems**

Similar to those on problem sets, homework assignments, class tests, and those done in class.

4.2 Computational Problems

- 1. Finding eivenvalues/bases for eigenspaces
- 2. Illustrating Schur's Theorem
- 3. Applying the Cayley-Hamilton Theorem
- 4. Eigenvalues of polynomials of a matrix
- 5. Computing singular values and related computations
- 6. Jordan Canonical Form and related problems (e.g. J form of the power of a J-block)
- 7. Gershgorin discs
- 8. Computing singular values and related matters
- 9. Eigenvalues of a polynomials of a matrix