
3/14/22, 7:56 PM

file:///home/user/Class%20Samples/datascience/list-comprehension-examples.html 1/3

Kernel: Python 3 (system-wide)

List comprehensions
A list comprehension is a way to create a new Python list from any iterable structure (often another list, but not

necessarily). The syntax looks a lot like the construction of a list with known components.

where if boolean is optional.

Here are a couple of examples.

First, we create a list from a range

In [1]:

<class 'list'>
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Why would we want to do this? Python ranges are different than lists; in particular, while they are iterable, they are not

mutable.

In [4]:

range(0, 10)
<class 'range'>

AttributeError Traceback (most recent call last)
/tmp/ipykernel_759/2580088131.py in <module>
 2 print(r)
 3 print(type(r))
----> 4 r.append(10)

AttributeError: 'range' object has no attribute 'append'

Next, let's compute the squares of the first 10 positive integers.

In [5]:

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Now, let's use a list comprehension to write a function that takes any iterable object as its first argument, and returns a

list of the values in that first argument that are divisible by the second argument.

In [6]:

And now let's see if it works!

[expression for variable in iterable if boolean_expression]

l = [i for i in range(10)]
print(type(l))
print(l)

Out[1]:

r = range(10)
print(r)
print(type(r))
r.append(10)

Out[4]:

[x**2 for x in range(10)]

Out[5]:

def divisible_by (iterable, divisor):
 return [a for a in iterable if a % divisor == 0]

3/14/22, 7:56 PM

file:///home/user/Class%20Samples/datascience/list-comprehension-examples.html 2/3

In [8]:

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
[0, 7, 14]

It's not just numbers that we can process using list comprehensions. The following set of examples come from this

site. First we define a string to operate on.

In [9]:

Now let's write a list comprehension that finds the length of each of the words

In [11]:

[8, 8, 2, 5, 4, 13, 2, 4, 4]

Figure out the longest word in the sentence

In [13]:

13

['Comprehension']

In [14]:

['Comprehension']

How many spaces are there in string ?

In [16]:

8

It's impressive what we can read without vowels. What does string look like without the vowels?

In [18]:

'Prctc Prblms t Drll Lst Cmprhnsn n yr Hd'

Find all of the words in string that are less than 5 letters

In [19]:

['to', 'List', 'in', 'your', 'Head']

Write this as a function, and call it to get the same result as above.

In [20]:

r = range(21)

evens = divisible_by(r, 2)
print(evens)

by_seven = divisible_by(r, 7)
print(by_seven)

Out[8]:

string = "Practice Problems to Drill List Comprehension in your Head"

[len(w) for w in string.split(" ")]

Out[11]:

words = string.split(" ")
word_lengths = [len(w) for w in words]
longest = max(word_lengths)
print(longest)
[w for w in words if len(w) == longest]

Out[13]:

[w for w in words if len(w) == max([len(w) for w in words])]

Out[14]:

len([c for c in string if c == ' '])

Out[16]:

''.join([c for c in string if c not in ['a', 'e', 'i', 'o', 'u']])

Out[18]:

[w for w in string.split(' ') if len(w) < 5]

Out[19]:

def words_less_than(string, delimiter=' ', length=5):
 return [w for w in string.split(delimiter) if len(w) < length]

https://towardsdatascience.com/beginner-to-advanced-list-comprehension-practice-problems-a89604851313

3/14/22, 7:56 PM

file:///home/user/Class%20Samples/datascience/list-comprehension-examples.html 3/3

In [22]:

['to', 'List', 'in', 'your', 'Head']
['Practice', 'Problems', 'to', 'Drill', 'List', 'in', 'your', 'Head']

Suppose there was no list comprehension in Python. How could we write it as a function ourselves?

In [26]:

Try it out a few times.

In [29]:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16]

Finally, what if we give some default arguments for expression_function and contains_function .

In [30]:

Try it out a few times.

In [31]:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16]

In [0]:

print(words_less_than(string, length=5))
print(words_less_than(string, length=9))

Out[22]:

def list_comprehension(iterable, expression_function=None, contains_function=None):
 result = []
 for i in iterable:
 if contains_function == None or contains_function(i)==True:
 if expression_function == None:
 result.append(i)
 else:
 result.append(expression_function(i))
 return result

print(list_comprehension(range(0,10)))
print(list_comprehension(range(0,10), expression_function=lambda x: x**2))
print(list_comprehension(range(0,10), expression_function=lambda x: x**2,
contains_function=lambda x: x < 5))

Out[29]:

def list_comprehension(iterable, expression_function=lambda x:x,
contains_function=lambda x:True):
 result = []
 for i in iterable:
 if contains_function(i)==True:
 result.append(expression_function(i))
 return result

print(list_comprehension(range(0,10)))
print(list_comprehension(range(0,10), expression_function=lambda x: x**2))
print(list_comprehension(range(0,10), expression_function=lambda x: x**2,
contains_function=lambda x: x < 5))

Out[31]:

