The Calculus of Parametric and Polar Equations

Kamlapati Khalsa

November 15, 2022

1 Parametric Equations

$$
x=f(t), y=g(t)
$$

Tangents

$$
\begin{gathered}
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t} \\
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \\
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
\end{gathered}
$$

Areas

$$
A=\int_{a}^{b} F(x) d x
$$

Substituting for x and dx to get the integral in terms of t :

$$
\begin{gathered}
\frac{d x}{d t}=f^{\prime}(t) \\
d x=f^{\prime}(t) d t
\end{gathered}
$$

$$
\begin{gathered}
A=\int_{\alpha}^{\beta} F(f(t)) f^{\prime}(t) d t \\
A=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t
\end{gathered}
$$

Arc Lengths

When $y=F(x)$ arc length is given by

$$
L=\int_{\alpha}^{\beta} \sqrt{1+F^{\prime}(x)^{2}} d x
$$

For parametric equations this becomes

$$
\begin{gathered}
L=\int_{\alpha}^{\beta} \sqrt{1+\left(\frac{d y / d t}{d x / d t}\right)^{2}} d x \\
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{gathered}
$$

or

$$
L=\int_{\alpha}^{\beta} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
$$

2 Polar Equations

$$
\begin{gathered}
r=f(\theta) \\
x=r \cos (\theta), y=r \sin (\theta) \\
x^{2}+y^{2}=r^{2}, \theta=\tan ^{-1} \frac{y}{x}
\end{gathered}
$$

Symmetry

1. If the equation is unchanged when θ is replaced by $-\theta$, then the graph is symmetric about the polar axis.
2. If the equation is unchanged when r is replaced by -r , then the graph is symmetric about the pole.
3. If the equation is unchanged when θ is replaced by $(\pi-\theta)$, then the graph is symmetric about the line $\theta=\frac{\pi}{2}$.

Quick Tests for Symmetry and Graphing Aids

1. The graph of $r=f(\sin (\theta))$ is symmetric with respect to the line $\theta=\frac{\pi}{2}$.
2. The graph of $r=f(\cos (\theta))$ is symmetric with respect to the polar axis.
3. Additional aids to graphing: find the θ values where $r=0$ and $|r|$ is a maximum.

Tangents

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Note, at the pole, where $r=0$, then $\frac{d y}{d x}=\tan \theta$ if $\frac{d r}{d \theta} \neq 0$

Areas

$$
\begin{gathered}
A_{\text {sector }}=\frac{1}{2} r^{2} \theta \\
A=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta=\int_{a}^{b} \frac{1}{2} r^{2} d \theta
\end{gathered}
$$

The area between curves, where $f(\theta) \geq g(\theta) \geq 0$, is

$$
A=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta-\int_{a}^{b} \frac{1}{2}[g(\theta)]^{2} d \theta
$$

Arc Lengths

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

