4 Ring Maps 4.1 Ring Maps: Attributes 4.1-1 KernelSubobject KernelSubobject( phi )  method Returns: a homalg submodule The kernel ideal of the ring map phi. 4.2 Ring Maps: Operations and Functions 4.2-1 SegreMap SegreMap( R, s )  method Returns: a homalg ring map The ring map corresponding to the Segre embedding of MultiProj(R) into the projective space according to P(W_1)× P(W_2) -> P(W_1⊗ W_2). 4.2-2 PlueckerMap PlueckerMap( l, n, A, s )  method Returns: a homalg ring map The ring map corresponding to the Plücker embedding of the Grassmannian G_l(P^n(A))=G_l(P(W)) into the projective space P(⋀^l W), where W=V^* is the A-dual of the free module V=A^n+1 of rank n+1. 4.2-3 VeroneseMap VeroneseMap( n, d, A, s )  method Returns: a homalg ring map The ring map corresponding to the Veronese embedding of the projective space P^n(A)=P(W) into the projective space P(S^d W), where W=V^* is the A-dual of the free module V=A^n+1 of rank n+1.