
HAPcryst – An extension of the GAP
package HAP for crystallographic groups

(Version 0.1.11)

Marc Röder

Marc Röder — Email: marc roeder(at)web.de

Address: Marc Röder, Department of Mathematics, NUI Gal-
way, Irleland

mailto://marc_roeder(at)web.de

HAPcryst – An extension of the GAP package HAP for crystallographic groups 2

Abstract

Copyright
c© 2007 Marc Röder.

This package is distributed under the terms of the GNU General Public License version 2 or later (at your
convenience). See the file LICENSE.txt or http://www.gnu.org/copyleft/gpl.html

Acknowledgements

This work was supported by Marie Curie Grant No. MTKD-CT-2006-042685

http://www.gnu.org/copyleft/gpl.html

Contents

1 Introduction 5
1.1 Abstract and Notation . 5

1.1.1 The natural action of crystallographic groups 5
1.2 Requirements . 6

1.2.1 Recommendation concerning polymake . 6
1.3 Global Variables . 6

1.3.1 InfoHAPcryst . 6

2 Bits and Pieces 7
2.1 Matrices and Vectors . 7

2.1.1 SignRat . 7
2.1.2 VectorModOne . 7
2.1.3 IsSquareMat . 7
2.1.4 DimensionSquareMat . 7

2.2 Affine Matrices OnRight . 8
2.2.1 LinearPartOfAffineMatOnRight . 8
2.2.2 BasisChangeAffineMatOnRight . 8
2.2.3 TranslationOnRightFromVector . 8

2.3 Geometry . 9
2.3.1 GramianOfAverageScalarProductFromFiniteMatrixGroup 9
2.3.2 Inequalities . 9
2.3.3 BisectorInequalityFromPointPair . 9
2.3.4 WhichSideOfHyperplane . 9
2.3.5 RelativePositionPointAndPolygon . 10

2.4 Space Groups . 10
2.4.1 PointGroupRepresentatives . 10

3 Algorithms of Orbit-Stabilizer Type 11
3.1 Orbit Stabilizer for Crystallographic Groups . 11

3.1.1 OrbitStabilizerInUnitCubeOnRight . 11
3.1.2 OrbitStabilizerInUnitCubeOnRightOnSets 12
3.1.3 OrbitPartInVertexSetsStandardSpaceGroup 12
3.1.4 OrbitPartInFacesStandardSpaceGroup . 13
3.1.5 OrbitPartAndRepresentativesInFacesStandardSpaceGroup 13
3.1.6 StabilizerOnSetsStandardSpaceGroup . 13
3.1.7 RepresentativeActionOnRightOnSets . 14

3

HAPcryst – An extension of the GAP package HAP for crystallographic groups 4

3.1.8 Getting other orbit parts . 14
3.1.9 ShiftedOrbitPart . 14
3.1.10 TranslationsToOneCubeAroundCenter . 14
3.1.11 TranslationsToBox . 14

4 Resolutions of Crystallographic Groups 16
4.1 Fundamental Domains . 16

4.1.1 FundamentalDomainStandardSpaceGroup 16
4.1.2 FundamentalDomainBieberbachGroup . 16
4.1.3 FundamentalDomainFromGeneralPointAndOrbitPartGeometric 18
4.1.4 IsFundamentalDomainStandardSpaceGroup 18
4.1.5 IsFundamentalDomainBieberbachGroup 18

4.2 Face Lattice and Resolution . 19
4.2.1 ResolutionBieberbachGroup . 19
4.2.2 FaceLatticeAndBoundaryBieberbachGroup 19
4.2.3 ResolutionFromFLandBoundary . 20

Chapter 1

Introduction

1.1 Abstract and Notation

HAPcryst is an extension for ”Homological Algebra Programming” (HAP, [Ell]) by Graham Ellis.
It uses geometric methods to calculate resolutions for crystallographic groups. In this manual, we
will use the terms ”space group” and ”crystallographic group” synonymous. As usual in GAP, group
elements are supposed to act from the right. To emphasize this fact, some functions have names
ending in ”OnRight” (namely those, which rely on the action from the right). This is also meant to
make work with HAPcryst and cryst [EG] easier.

The functions called ”somethingStandardSpaceGroup” are supposed to work for standard crys-
tallographic groups on left and right some time in the future. Currently only the versions acting on
right are implemented. As in cryst [EG], space groups are represented as affine linear groups. For
the computations in HAPcryst, crystallographic groups have to be in ”standard form”. That is, the
translation basis has to be the standard basis of the space. This implies that the linear part of a group
element need not be orthogonal with respect to the usual scalar product.

1.1.1 The natural action of crystallographic groups

There is some confusion about the way crystallographic groups are written. This concerns the question
if we act on left or on right and if vectors are of the form [1,...] or [...,1].

As mentioned, HAPcryst handles affine crystallographic groups on right (and maybe later also on
left) acting on vectors of the form [...,1].

BUT: The functions in HAPcryst do not take augmented vectors as input (no leading or ending
ones). The handling of vectors is done internally. So in HAPcryst, a crystallographic group is a group
of n×n matrices which acts on a vector space of dimension n−1 whose elements are vectors of length
n−1 (not n). Example:

Example
gap> G:=SpaceGroup(3,4); #This group acts on 3-Space
SpaceGroupOnRightBBNWZ(3, 2, 1, 1, 2)
gap> Display(Representative(G));
[[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]

gap> OrbitStabilizerInUnitCubeOnRight(G,[1/2,0,0]);
rec(orbit := [[1/2, 0, 0], [1/2, 1/2, 0]],

5

HAPcryst – An extension of the GAP package HAP for crystallographic groups 6

stabilizer := Group([[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
[0, 0, 0, 1]]]))

1.2 Requirements

The following GAP packages are required

• polymaking which in turn depends on the computational geometry software polymake.

• HAP

• Cryst

The following GAP packages are not required but highly recommended:

• carat

• CrystCat

• GAPDoc is needed to display the online manual

1.2.1 Recommendation concerning polymake

Calculating resolutions of Bieberbach groups involves convex hull computations. polymake by default
uses cdd to compute convex hulls. Experiments suggest that lrs is the more suitable algorithm for the
computations done in HAPcryst than the default cdd. You can change the behaviour of by editing the
file ”yourhomedirectory/.polymake/prefer.pl”. It should contain a section like this (just make sure lrs
is before cdd, the position of beneath beyond does not matter):

###
application polytope;

prefer "*.convex_hull lrs, beneath_beyond, cdd";

1.3 Global Variables

HAPcryst itself does only have one global variable, namely InfoHAPcryst (1.3.1). The location of
files generated for interaction with polymake are determined by the value of POLYMAKE DATA DIR
(polymaking: POLYMAKE DATA DIR) which is a global variable of polymaking.

1.3.1 InfoHAPcryst

♦ InfoHAPcryst (info class)

At a level of 1, only the most important messages are printed. At level 2, additional information
is displayed, and level 3 is even more verbose. At level 0, HAPcryst remains silent.

Chapter 2

Bits and Pieces

This chapter contains a few very basic functions which are needed for space group calculations and
were missing in standard GAP.

2.1 Matrices and Vectors

2.1.1 SignRat

♦ SignRat(x) (method)

Returns: sign of the rational number x (Standard GAP currently only has SignInt).

2.1.2 VectorModOne

♦ VectorModOne(v) (method)

Returns: Rational vector of the same length with enties in [0,1)
For a rational vector v , this returns the vector with all entries taken ”mod 1”.

Example
gap> SignRat((-4)/(-2));
1
gap> SignRat(9/(-2));
-1
gap> VectorModOne([1/10,100/9,5/6,6/5]);
[1/10, 1/9, 5/6, 1/5]

2.1.3 IsSquareMat

♦ IsSquareMat(matrix) (method)

Returns: true if matrix is a square matrix and false otherwise.

2.1.4 DimensionSquareMat

♦ DimensionSquareMat(matrix) (method)

Returns: Number of lines in the matrix matrix if it is square and fail otherwise
Example

gap> m:=[[1,2,3],[4,5,6],[9,6,12]];
[[1, 2, 3], [4, 5, 6], [9, 6, 12]]

7

HAPcryst – An extension of the GAP package HAP for crystallographic groups 8

gap> IsSquareMat(m);
true
gap> DimensionSquareMat(m);
3
gap> DimensionSquareMat([[1,2],[1,2,3]]);
Error, Matrix is not square called from

Affine mappings of n dimensional space are often written as a pair (A,v) where A is a linear mapping
and v is a vector. GAP represents affine mappings by n + 1 times n + 1 matrices M which satisfy
Mn+1,n+1 = 1 and Mi,n+1 = 0 for all 1≤ i≤ n.

An affine matrix acts on an n dimensional space which is written as a space of n + 1 tuples with
n+1st entry 1. Here we give two functions to handle these affine matrices.

2.2 Affine Matrices OnRight

2.2.1 LinearPartOfAffineMatOnRight

♦ LinearPartOfAffineMatOnRight(mat) (method)

Returns: the linear part of the affine matrix mat. That is, everything except for the last row and
column.

2.2.2 BasisChangeAffineMatOnRight

♦ BasisChangeAffineMatOnRight(transform, mat) (method)

Returns: affine matrix with same dimensions as mat
A basis change transform of an n dimensional space induces a transformation on affine map-

pings on this space. If mat is a affine matrix (in particular, it is (n+1)× (n+1)), this method returns
the image of mat under the basis transformation induced by transform.

Example
gap> c:=[[0,1],[1,0]];
[[0, 1], [1, 0]]
gap> m:=[[1/2,0,0],[0,2/3,0],[1,0,1]];
[[1/2, 0, 0], [0, 2/3, 0], [1, 0, 1]]
gap> BasisChangeAffineMatOnRight(c,m);
[[2/3, 0, 0], [0, 1/2, 0], [0, 1, 1]]

2.2.3 TranslationOnRightFromVector

♦ TranslationOnRightFromVector(v) (method)

Returns: Affine matrix
Given a vector v with n entries, this method returns a (n+1)× (n+1) matrix which corresponds

to the affine translation defined by v .
Example

gap> m:=TranslationOnRightFromVector([1,2,3]);;
gap> Display(m);
[[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],

HAPcryst – An extension of the GAP package HAP for crystallographic groups 9

[1, 2, 3, 1]]
gap> LinearPartOfAffineMatOnRight(m);
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
gap> BasisChangeAffineMatOnRight([[3,2,1],[0,1,0],[0,0,1]],m);
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [3, 4, 4, 1]]

2.3 Geometry

2.3.1 GramianOfAverageScalarProductFromFiniteMatrixGroup

♦ GramianOfAverageScalarProductFromFiniteMatrixGroup(G) (method)

Returns: Symmetric positive definite matrix
For a finite matrix group G, the gramian matrix of the average scalar product is returned. This

is the sum over all ggt with g ∈ G (actually it is enough to take a generating set). The group G is
orthogonal with respect to the scalar product induced by the returned matrix.

2.3.2 Inequalities

Inequalities are represented in the same way they are represented in polymaking. The vector
(v0, . . . ,vn) represents the inequality 0≤ v0 + v1x1 + . . .+ vnxn.

2.3.3 BisectorInequalityFromPointPair

♦ BisectorInequalityFromPointPair(v1, v2[, gram]) (method)

Returns: vector of length Length(v1)+1
Calculates the inequality defining the half-space containing v1 such that v1-v2 is perpendicular

on the bounding hyperplane. And (v1-v2)/2 is contained in the bounding hyperplane.
If the matrix gram is given, it is used as the gramian matrix. Otherwiese, the standard scalar product
is used. It is not checked if gram is positive definite or symmetric.

2.3.4 WhichSideOfHyperplane

♦ WhichSideOfHyperplane(v, ineq) (method)

♦ WhichSideOfHyperplaneNC(v, ineq) (method)

Returns: -1 (below) 0 (in) or 1 (above).
Let v be a vector of length n and ineq an inequality represented by a vector of length n + 1.

Then WhichSideOfHyperplane(v, ineq) returns 1 if v is a solution of the inequality but not the
equation given by ineq , it returns 0 if v is a solution to the equation and -1 if it is not a solution of
the inequality ineq .

The NC version does not test the input for correctness.
Example

gap> BisectorInequalityFromPointPair([0,0],[1,0]);
[1, -2, 0]
gap> ineq:=BisectorInequalityFromPointPair([0,0],[1,0],[[5,4],[4,5]]);
[5, -10, -8]
gap> ineq{[2,3]}*[1/2,0];
-5
gap> WhichSideOfHyperplane([0,0],ineq);

HAPcryst – An extension of the GAP package HAP for crystallographic groups 10

1
gap> WhichSideOfHyperplane([1/2,0],ineq);
0

2.3.5 RelativePositionPointAndPolygon

♦ RelativePositionPointAndPolygon(point, poly) (method)

Returns: one of "VERTEX", "FACET", "OUTSIDE", "INSIDE"
Let poly be a PolymakeObject and point a vector. If point is a vertex of poly , the string

"VERTEX" is returned. If point lies inside poly , "INSIDE" is returned and if it lies in a facet,
"FACET" is returned and if point does not lie inside poly , the function returns "OUTSIDE".

2.4 Space Groups

2.4.1 PointGroupRepresentatives

♦ PointGroupRepresentatives(group) (attribute)

♦ PointGroupRepresentatives(group) (method)

Returns: list of matrices
Given an AffineCrystGroupOnLeftOrRight group, this returns a list of representatives of the

point group of group. That is, a system of representatives for the factor group modulo translations.
This is an attribute of AffineCrystGroupOnLeftOrRight

Chapter 3

Algorithms of Orbit-Stabilizer Type

We introduce a way to calculate a sufficient part of an orbit and the stabilizer of a point.

3.1 Orbit Stabilizer for Crystallographic Groups

3.1.1 OrbitStabilizerInUnitCubeOnRight

♦ OrbitStabilizerInUnitCubeOnRight(group, x) (method)

Returns: A record containing

• .stabilizer: the stabilizer of x.

• .orbit set of vectors from [0,1)n which represents the orbit.

Let x be a rational vector from [0,1)n and group a space group in standard form. The function
then calculates the part of the orbit which lies inside the cube [0,1)n and the stabilizer of x. Observe
that every element of the full orbit differs from a point in the returned orbit only by a pure translation.

Note that the restriction to points from [0,1)n makes sense if orbits should be compared and the
vector passed to OrbitStabilizerInUnitCubeOnRight should be an element of the returned orbit
(part).

Example

gap> S:=SpaceGroup(3,5);;
gap> OrbitStabilizerInUnitCubeOnRight(S,[1/2,0,9/11]);
rec(orbit := [[0, 1/2, 2/11], [1/2, 0, 9/11]],
stabilizer := Group([[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],

[0, 0, 0, 1]]]))
gap> OrbitStabilizerInUnitCubeOnRight(S,[0,0,0]);
rec(orbit := [[0, 0, 0]], stabilizer := <matrix group with 2 generators>)

If you are interested in other parts of the orbit, you can use VectorModOne (2.1.2) for the base point
and the functions ShiftedOrbitPart (3.1.9), TranslationsToOneCubeAroundCenter (3.1.10) and
TranslationsToBox (3.1.11) for the resulting orbit
Suppose we want to calculate the part of the orbit of [4/3,5/3,7/3] in the cube of sidelength 1
around this point:

11

HAPcryst – An extension of the GAP package HAP for crystallographic groups 12

Example
gap> S:=SpaceGroup(3,5);;
gap> p:=[4/3,5/3,7/3];;
gap> o:=OrbitStabilizerInUnitCubeOnRight(S,VectorModOne(p)).orbit;
[[1/3, 2/3, 1/3], [1/3, 2/3, 2/3]]
gap> box:=p+[[-1,1],[-1,1],[-1,1]];
[[1/3, 8/3, 7/3], [1/3, 8/3, 7/3], [1/3, 8/3, 7/3]]
gap> o2:=Concatenation(List(o,i->i+TranslationsToBox(i,box)));;
gap> # This is what we looked for. But it is somewhat large:
gap> Size(o2);
54

3.1.2 OrbitStabilizerInUnitCubeOnRightOnSets

♦ OrbitStabilizerInUnitCubeOnRightOnSets(group, set) (method)

Returns: A record containing

• .stabilizer: the stabilizer of set.

• .orbit set of sets of vectors from [0,1)n which represents the orbit.

Calculates orbit and stabilizer of a set of vectors. Just as OrbitStabilizerInUnitCubeOnRight
(3.1.1), it needs input from [0,1)n. The returned orbit part .orbit is a set of sets such that every
element of .orbit has a non-trivial intersection with the cube [0,1)n. In general, these sets will not
lie inside [0,1)n completely.

Example
gap> S:=SpaceGroup(3,5);;
gap> OrbitStabilizerInUnitCubeOnRightOnSets(S,[[0,0,0],[0,1/2,0]]);
rec(orbit := [[[-1/2, 0, 0], [0, 0, 0]],

[[0, 0, 0], [0, 1/2, 0]],
[[1/2, 0, 0], [1, 0, 0]]],

stabilizer := Group([[[1, 0, 0, 0], [0, 1, 0, 0],
[0, 0, 1, 0], [0, 0, 0, 1]]]))

3.1.3 OrbitPartInVertexSetsStandardSpaceGroup

♦ OrbitPartInVertexSetsStandardSpaceGroup(group, vertexset, allvertices)
(method)

Returns: Set of subsets of allvertices.
If allvertices is a set of vectors and vertexset is a subset thereof, then

OrbitPartInVertexSetsStandardSpaceGroup returns that part of the orbit of vertexset which
consists entirely of subsets of allvertices. Note that,unlike the other OrbitStabilizer algo-
rithms, this does not require the input to lie in some particular part of the space.

Example
gap> S:=SpaceGroup(3,5);;
gap> OrbitPartInVertexSetsStandardSpaceGroup(S,[[0,1,5],[1,2,0]],
> Set([[1,2,0],[2,3,1],[1,2,6],[1,1,0],[0,1,5],[3/5,7,12],[1/17,6,1/2]]));
[[[0, 1, 5], [1, 2, 0]], [[1, 2, 6], [2, 3, 1]]]
gap> OrbitPartInVertexSetsStandardSpaceGroup(S, [[1,2,0]],
> Set([[1,2,0],[2,3,1],[1,2,6],[1,1,0],[0,1,5],[3/5,7,12],[1/17,6,1/2]]));
[[[0, 1, 5]], [[1, 1, 0]], [[1, 2, 0]], [[1, 2, 6]], [[2, 3, 1]]]

HAPcryst – An extension of the GAP package HAP for crystallographic groups 13

3.1.4 OrbitPartInFacesStandardSpaceGroup

♦ OrbitPartInFacesStandardSpaceGroup(group, vertexset, faceset) (method)

Returns: Set of subsets of faceset.
This calculates the orbit of a space group on sets restricted to a set of faces.

If faceset is a set of sets of vectors and vertexset is an element of faceset, then
OrbitPartInFacesStandardSpaceGroup returns that part of the orbit of vertexset which con-
sists entirely of elements of faceset.
Note that,unlike the other OrbitStabilizer algorithms, this does not require the input to lie in some
particular part of the space.

3.1.5 OrbitPartAndRepresentativesInFacesStandardSpaceGroup

♦ OrbitPartAndRepresentativesInFacesStandardSpaceGroup(group, vertexset,
faceset) (method)

Returns: A set of face-matrix pairs .
This is a slight variation of OrbitPartInFacesStandardSpaceGroup (3.1.4) that also returns a

representative for every orbit element.
Example

gap> S:=SpaceGroup(3,5);;
gap> OrbitPartInVertexSetsStandardSpaceGroup(S,[[0,1,5],[1,2,0]],
> Set([[1,2,0],[2,3,1],[1,2,6],[1,1,0],[0,1,5],[3/5,7,12],[1/17,6,1/2]]));
[[[0, 1, 5], [1, 2, 0]], [[1, 2, 6], [2, 3, 1]]]
gap> OrbitPartInFacesStandardSpaceGroup(S,[[0,1,5],[1,2,0]],
> Set([[[0, 1, 5], [1, 2, 0]], [[1/17,6,1/2],[1,2,7]]]));
[[[0, 1, 5], [1, 2, 0]]]
gap> OrbitPartAndRepresentativesInFacesStandardSpaceGroup(S,[[0,1,5],[1,2,0]],
> Set([[[0, 1, 5], [1, 2, 0]], [[1/17,6,1/2],[1,2,7]]]));
[[[[0, 1, 5], [1, 2, 0]],

[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]]

3.1.6 StabilizerOnSetsStandardSpaceGroup

♦ StabilizerOnSetsStandardSpaceGroup(group, set) (method)

Returns: finite group of affine matrices (OnRight)
Given a set set of vectors and a space group group in standard form, this method calculates

the stabilizer of that set in the full crystallographic group.

Example

gap> G:=SpaceGroup(3,12);;
gap> v:=[0, 0,0];;
gap> s:=StabilizerOnSetsStandardSpaceGroup(G,[v]);
<matrix group with 2 generators>
gap> s2:=OrbitStabilizerInUnitCubeOnRight(G,v).stabilizer;
<matrix group with 2 generators>
gap> s2=s;
true

HAPcryst – An extension of the GAP package HAP for crystallographic groups 14

3.1.7 RepresentativeActionOnRightOnSets

♦ RepresentativeActionOnRightOnSets(group, set, imageset) (method)

Returns: Affine matrix.
Returns an element of the space group S which takes the set set to the set imageset. The

group must be in standard form and act on the right.
Example

gap> S:=SpaceGroup(3,5);;
gap> RepresentativeActionOnRightOnSets(G, [[0,0,0],[0,1/2,0]],
> [[0, 1/2, 0], [0, 1, 0]]);
[[0, -1, 0, 0], [-1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 1]]

3.1.8 Getting other orbit parts

HAPcryst does not calculate the full orbit but only the part of it having coefficients between−1/2 and
1/2. The other parts of the orbit can be calculated using the following functions.

3.1.9 ShiftedOrbitPart

♦ ShiftedOrbitPart(point, orbitpart) (method)

Returns: Set of vectors
Takes each vector in orbitpart to the cube unit cube centered in point.

Example
gap> ShiftedOrbitPart([0,0,0],[[1/2,1/2,1/3],-[1/2,1/2,1/2],[19,3,1]]);
[[1/2, 1/2, 1/3], [1/2, 1/2, 1/2], [0, 0, 0]]
gap> ShiftedOrbitPart([1,1,1],[[1/2,1/2,1/2],-[1/2,1/2,1/2]]);
[[3/2, 3/2, 3/2]]

3.1.10 TranslationsToOneCubeAroundCenter

♦ TranslationsToOneCubeAroundCenter(point, center) (method)

Returns: List of integer vectors
This method returns the list of all integer vectors which translate point into the box

center+[−1/2,1/2]n

Example
gap> TranslationsToOneCubeAroundCenter([1/2,1/2,1/3],[0,0,0]);
[[0, 0, 0], [0, -1, 0], [-1, 0, 0], [-1, -1, 0]]
gap> TranslationsToOneCubeAroundCenter([1,0,1],[0,0,0]);
[[-1, 0, -1]]

3.1.11 TranslationsToBox

♦ TranslationsToBox(point, box) (method)

Returns: An iterator of integer vectors or the empty iterator
Given a vector v and a list of pairs, this function returns the translation vectors (integer vectors)

which take v into the box box. The box box has to be given as a list of pairs.

HAPcryst – An extension of the GAP package HAP for crystallographic groups 15

Example
gap> TranslationsToBox([0,0],[[1/2,2/3],[1/2,2/3]]);
[]
gap> TranslationsToBox([0,0],[[-3/2,1/2],[1,4/3]]);
[[-1, 1], [0, 1]]
gap> TranslationsToBox([0,0],[[-3/2,1/2],[2,1]]);
Error, Box must not be empty called from
...

Chapter 4

Resolutions of Crystallographic Groups

4.1 Fundamental Domains

Let S be a crystallographic group. A Fundamental domain is a closed convex set containing a system
of representatives for the Orbits of S in its natural action on euclidian space.
There are two algorithms for calculating fundamental domains in HAPcryst. One uses the geometry
and relies on having the standard rule for evaluating the scalar product (i.e. the gramian matrix is
the identity). The other one is independent of the gramian matrix but does only work for Bieberbach
groups, while the first (”geometric”) algorithm works for arbitrary crystallographic groups given a
point with trivial stabilizer.

4.1.1 FundamentalDomainStandardSpaceGroup

♦ FundamentalDomainStandardSpaceGroup([v,]G) (method)

♦ FundamentalDomainStandardSpaceGroup(v, G) (method)

Returns: a PolymakeObject
Let G be an AffineCrystGroupOnRight and v a vector. A fundamental domain containing v

is calculated and returned as a PolymakeObject. The vector v is used as the starting point for a
Dirichlet-Voronoi construction. If no v is given, the origin is used as starting point if it has trivial
stabiliser. Otherwise an error is cast.

Example
gap> fd:=FundamentalDomainStandardSpaceGroup([1/2,0,1/5],SpaceGroup(3,9));
<polymake object>
gap> Polymake(fd,"N_VERTICES");
24
gap> fd:=FundamentalDomainStandardSpaceGroup(SpaceGroup(3,9));
<polymake object>
gap> Polymake(fd,"N_VERTICES");
8

4.1.2 FundamentalDomainBieberbachGroup

♦ FundamentalDomainBieberbachGroup(G) (method)

♦ FundamentalDomainBieberbachGroup(v, G[, gram]) (method)

Returns: a PolymakeObject

16

HAPcryst – An extension of the GAP package HAP for crystallographic groups 17

Given a starting vector v and a Bieberbach group G in standard form, this method calculates the
Dirichlet domain with respect to v . If gram is not supplied, the average gramian matrix is used (see
GramianOfAverageScalarProductFromFiniteMatrixGroup (2.3.1)). It is not tested if gram is
symmetric and positive definite. It is also not tested, if the product defined by gram is invariant under
the point group of G.

The behaviour of this function is influenced by the option ineqThreshold. The algorithm calcu-
lates approximations to a fundamental domain by iteratively adding inequalities. For an approximating
polyhedron, every vertex is tested to find new inequalities. When all vertices have been considered or
the number of new inequalities already found exceeds the value of ineqThreshold, a new approxi-
mating polyhedron in calculated. The default for ineqThreshold is 200. Roughly speaking, a large
threshold means shifting work from polymake to GAP, a small one means more calls of (and work
for) polymake.

If the value of InfoHAPcryst (1.3.1) is 2 or more, for each approximation the number of vertices
of the approximation, the number of vertices that have to be considered during the calculation, the
number of facets, and new inequalities is shown.

Note that the algorithm chooses vertices in random order and also writes inequalities for polymake
in random order.

Example
gap> a0:=[[1, 0, 0, 0, 0, 0, 0], [0, -1, 0, 0, 0, 0, 0],
> [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0],
> [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, -1, -1, 0],
> [-1/2, 0, 0, 1/6, 0, 0, 1]
>];;
gap> a1:=[[0, -1, 0, 0, 0, 0, 0],[0, 0, -1, 0, 0, 0, 0],
> [1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0],
> [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0],
> [0, 0, 0, 0, 1/3, -1/3, 1]
>];;
gap> trans:=List(Group((1,2,3,4,5,6)),g->
> TranslationOnRightFromVector(Permuted([1,0,0,0,0,0],g)));;
gap> S:=AffineCrystGroupOnRight(Concatenation(trans,[a0,a1]));
<matrix group with 8 generators>
gap> SetInfoLevel(InfoHAPcryst,2);
gap> FundamentalDomainBieberbachGroup(S:ineqThreshold:=10);
#I v: 104/104 f:15
#I new: 201
#I v: 961/961 f:58
#I new: 20
#I v: 1143/805 f:69
#I new: 12
#I v: 1059/555 f:64
#I new: 15
#I v: 328/109 f:33
#I new: 12
#I v: 336/58 f:32
#I new: 0
<polymake object>
gap> FundamentalDomainBieberbachGroup(S:ineqThreshold:=1000);
#I v: 104/104 f:15
#I new: 149
#I v: 635/635 f:41

HAPcryst – An extension of the GAP package HAP for crystallographic groups 18

#I new: 115
#I v: 336/183 f:32
#I new: 0
#I out of inequalities
<polymake object>

4.1.3 FundamentalDomainFromGeneralPointAndOrbitPartGeometric

♦ FundamentalDomainFromGeneralPointAndOrbitPartGeometric(v, orbit) (method)

Returns: a PolymakeObject
This uses an alternative algorithm based on geometric considerations. It is not used in any of the

high-level methods. Let v be a vector and orbit a sufficiently large part of the orbit of v under
a crystallographic group with standard- orthogonal point group (satisfying At = A−1). A geometric
algorithm is then used to calculate the Dirichlet domain with respect to v . This also works for crys-
tallographic groups which are not Bieberbach. The point v has to have trivial stabilizer.
The intersection of the full orbit with the unit cube around v is sufficiently large.

Example
gap> G:=SpaceGroup(3,9);;
gap> v:=[0,0,0];
[0, 0, 0]
gap> orbit:=OrbitStabilizerInUnitCubeOnRight(G,v).orbit;
[[0, 0, 0], [0, 0, 1/2]]
gap> fd:=FundamentalDomainFromGeneralPointAndOrbitPartGeometric(v,orbit);
<polymake object>
gap> Polymake(fd,"N_VERTICES");
8

4.1.4 IsFundamentalDomainStandardSpaceGroup

♦ IsFundamentalDomainStandardSpaceGroup(poly, G) (method)

Returns: true or false
This tests if a PolymakeObject poly is a fundamental domain for the affine crystallographic

group G in standard form.
The function tests the following: First, does the orbit of any vertex of poly have a point inside poly
(if this is the case, false is returned). Second: Is every facet of poly the image of a different facet
under a group element which does not fix poly . If this is satisfied, true is returned.

4.1.5 IsFundamentalDomainBieberbachGroup

♦ IsFundamentalDomainBieberbachGroup(poly, G) (method)

Returns: true, false or fail
This tests if a PolymakeObject poly is a fundamental domain for the affine crystallographic

group G in standard form and if this group is torsion free (ie a Bieberbach group)
It returns true if G is torsion free and poly is a fundamental domain for G. If poly is not a
fundamental domain, false is returned regardless of the structure of G. And if G is not torsion free,
the method returns fail. If G is polycyclic, torsion freeness is tested using a representation as pcp
group. Otherwise the stabilisers of the faces of the fundamental domain poly are calculated (G is
torsion free if and only if it all these stabilisers are trivial).

HAPcryst – An extension of the GAP package HAP for crystallographic groups 19

4.2 Face Lattice and Resolution

For Bieberbach groups (torsion free crystallographic groups), the following functions calcualte free
resolutions. This calculation is done by finding a fundamental domain for the group. For a description
of the HapResolution datatype, see the Hap data types documentation or the experimental datatypes
documentation HAPprog: Resolutions in Hap

4.2.1 ResolutionBieberbachGroup

♦ ResolutionBieberbachGroup(G[, v]) (method)

Returns: a HAPresolution
Let G be a Bieberbach group given as an AffineCrystGroupOnRight and

v a vector. Then a Dirichlet domain with respect to v is calculated using
FundamentalDomainBieberbachGroup (4.1.2). From this domain, a resolution is calculated
using FaceLatticeAndBoundaryBieberbachGroup (4.2.2) and ResolutionFromFLandBoundary
(4.2.3). If v is not given, the origin is used.

Example
gap> R:=ResolutionBieberbachGroup(SpaceGroup(3,9));
Resolution of length 3 in characteristic
0 for SpaceGroupOnRightBBNWZ(3, 2, 2, 2, 2) .
No contracting homotopy available.

gap> List([0..3],Dimension(R));
[1, 3, 3, 1]
gap> R:=ResolutionBieberbachGroup(SpaceGroup(3,9),[1/2,0,0]);
Resolution of length 3 in characteristic
0 for SpaceGroupOnRightBBNWZ(3, 2, 2, 2, 2) .
No contracting homotopy available.

gap> List([0..3],Dimension(R));
[6, 12, 7, 1]

4.2.2 FaceLatticeAndBoundaryBieberbachGroup

♦ FaceLatticeAndBoundaryBieberbachGroup(poly, group) (method)

Returns: Record with entries .hasse and .elts representing a part of the hasse diagram and a
lookup table of group elements

Let group be a torsion free AffineCrystGroupOnRight (that is, a Bieberbach group). Given a
PolymakeObject poly representing a fundamental domain for group, this method uses polymaking
to calculate the face lattice of poly . From the set of faces, a system of representatives for group-
orbits is chosen. For each representative, the boundary is then calculated. The list .elts contains
elements of group (in fact, it is even a set). The structure of the returned list .hasse is as follows:

• The i-th entry contains a system of representatives for the i−1 dimensional faces of poly .

• Each face is represented by a pair of lists [vertices,boundary]. The list of integers vertices
represents the vertices of poly which are contained in this face. The enumeration is chosen
such that an i in the list represents the i-th entry of the list Polymake(poly,"VERTICES");

HAPcryst – An extension of the GAP package HAP for crystallographic groups 20

• The list boundary represents the boundary of the respective face. It is a list of pairs of integers
[j,g]. The first entry lies between−n and n, where n is the number of faces of dimension i−1.
This entry represents a face of dimension i− 1 (or its additive inverse as a module generator).
The second entry g is the position of the matrix in .elts.

This representation is compatible with the representation of free G modules in Hap and this method
essentially calculates a free resolution of group. If the value of InfoHAPcryst (1.3.1) is 2 or more,
additional information about the number of faces in every codimension, the number of orbits of the
group on the free module generated by those faces, and the time it took to calculate the orbit decom-
position is output.

Example
gap> SetInfoLevel(InfoHAPcryst,2);
gap> G:=SpaceGroup(3,165);
SpaceGroupOnRightBBNWZ(3, 6, 1, 1, 4)
gap> fd:=FundamentalDomainBieberbachGroup(G);
<polymake object>
gap> fl:=FaceLatticeAndBoundaryBieberbachGroup(fd,G);;
#I 1(4/8): 0:00:00.004
#I 2(5/18): 0:00:00.000
#I 3(2/12): 0:00:00.000
#I Face lattice done (0:00:00.004). Calculating boundary
#I done (0:00:00.004) Reformating...
gap> RecNames(fl);
["hasse", "elts", "groupring"]
gap> fl.groupring;
<free left module over Integers, and ring-with-one, with 10 generators>

4.2.3 ResolutionFromFLandBoundary

♦ ResolutionFromFLandBoundary(fl, group) (method)

Returns: Free resolution
If fl is the record output by FaceLatticeAndBoundaryBieberbachGroup (4.2.2) and group is

the corresponding group, this function returns a HapResolution. Of course, fl has to be generated
from a fundamental domain for group

Example
gap> G:=SpaceGroup(3,165);
SpaceGroupOnRightBBNWZ(3, 6, 1, 1, 4)
gap> fd:=FundamentalDomainBieberbachGroup(G);
<polymake object>
gap> fl:=FaceLatticeAndBoundaryBieberbachGroup(fd,G);;
gap> ResolutionFromFLandBoundary(fl,G);
Resolution of length 3 in characteristic
0 for SpaceGroupOnRightBBNWZ(3, 6, 1, 1, 4) .
No contracting homotopy available.

gap> ResolutionFromFLandBoundary(fl,G);
Resolution of length 3 in characteristic
0 for SpaceGroupOnRightBBNWZ(3, 6, 1, 1, 4) .
No contracting homotopy available.

HAPcryst – An extension of the GAP package HAP for crystallographic groups 21

gap> List([0..4],Dimension(last));
[2, 5, 4, 1, 0]

References

[EG] Bettina Eick and Franz G˙00

crystGrahamEllis.Hap.htt p : //hamilton.nuigalway.ie/Hap/www/.5

[Ell]

22

Index

action of crystallographic groups, 5

BasisChangeAffineMatOnRight, 8
BisectorInequalityFromPointPair, 9

DimensionSquareMat, 7

FaceLatticeAndBoundaryBieberbachGroup,
19

FundamentalDomainBieberbachGroup, 16
FundamentalDomainFromGeneralPointAnd-

OrbitPartGeometric, 18
FundamentalDomainStandardSpaceGroup, 16

GramianOfAverageScalarProductFrom-
FiniteMatrixGroup, 9

ineqThreshold, 17
InfoHAPcryst, 6
installation, 6
IsFundamentalDomainBieberbachGroup, 18
IsFundamentalDomainStandardSpaceGroup,

18
IsSquareMat, 7

LinearPartOfAffineMatOnRight, 8

OrbitPartAndRepresentativesInFaces-
StandardSpaceGroup, 13

OrbitPartInFacesStandardSpaceGroup, 13
OrbitPartInVertexSetsStandardSpaceGroup,

12
OrbitStabilizerInUnitCubeOnRight, 11
OrbitStabilizerInUnitCubeOnRightOnSets,

12

PointGroupRepresentatives, 10
polymake, 6

RelativePositionPointAndPolygon, 10
RepresentativeActionOnRightOnSets, 14

ResolutionBieberbachGroup, 19
ResolutionFromFLandBoundary, 20

ShiftedOrbitPart, 14
SignRat, 7
StabilizerOnSetsStandardSpaceGroup, 13

TranslationOnRightFromVector, 8
TranslationsToBox, 14
TranslationsToOneCubeAroundCenter, 14

VectorModOne, 7

WhichSideOfHyperplane, 9
WhichSideOfHyperplaneNC, 9

23

