[1X3 [33X[0;0YQuick Start[133X[101X
[1X3.1 [33X[0;0YLocalization of ℤ[133X[101X
[33X[0;0YThe following example is taken from Section 2 of [BR06].[133X
[33X[0;0YThe computation takes place over the local ring [22XR=ℤ_⟨ 2⟩[122X (i.e. ℤ localized
at the maximal ideal generated by [22X2[122X).[133X
[33X[0;0YHere we compute the (infinite) long exact homology sequence of the covariant
functor [22XHom(Hom(-,R/2^7R),R/2^4R)[122X (and its left derived functors) applied to
the short exact sequence[133X
[33X[0;0Y[22X0 -> M_=R/2^2R --alpha_1--> M=R/2^5R --alpha_2--> _M=R/2^3R -> 0[122X.[133X
[33X[0;0YWe want to lead your attention to the commands [9XLocalizeAt[109X and
[9XHomalgLocalMatrix[109X. The first one creates a localized ring from a global one
and generators of a maximal ideal and the second one creates a local matrix
from a global matrix. The other commands used here are well known from
[5Xhomalg[105X.[133X
[4X[32X Example [32X[104X
[4X[28X [128X[104X
[4X[25Xgap>[125X [27XLoadPackage( "LocalizeRingForHomalg" );;[127X[104X
[4X[25Xgap>[125X [27XZZ := HomalgRingOfIntegers( );[127X[104X
[4X[28XZ[128X[104X
[4X[25Xgap>[125X [27XR := LocalizeAt( ZZ , [ 2 ] );[127X[104X
[4X[28XZ_< 2 >[128X[104X
[4X[25Xgap>[125X [27XDisplay( R );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XLoadPackage( "Modules" );[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XM := LeftPresentation( HomalgMatrix( [ 2^5 ], R ) );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27X_M := LeftPresentation( HomalgMatrix( [ 2^3 ], R ) );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xalpha2 := HomalgMap( HomalgMatrix( [ 1 ], R ), M, _M );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XM_ := Kernel( alpha2 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xalpha1 := KernelEmb( alpha2 );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( M_ );[127X[104X
[4X[28XZ_< 2 >/< -4/1 >[128X[104X
[4X[25Xgap>[125X [27XDisplay( alpha1 );[127X[104X
[4X[28X[ [ 24 ] ][128X[104X
[4X[28X/ 1[128X[104X
[4X[28X[128X[104X
[4X[28Xthe map is currently represented by the above 1 x 1 matrix[128X[104X
[4X[25Xgap>[125X [27XByASmallerPresentation( M_ );[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay( M_ );[127X[104X
[4X[28XZ_< 2 >/< 4/1 >[128X[104X
[4X[32X[104X