ModulePresentationsForCAP   Category R-pres for CAP  2017.09.09 9 September 2017 Sebastian Gutsche Sebastian Posur Sebastian Gutsche Email: mailto:gutsche@mathematik.uni-siegen.de Homepage: http://www.uni-siegen.de/fb6/rmi/ Address: Department Mathematik Universität Siegen Walter-Flex-Straße 3 57068 Siegen Germany Sebastian Posur Email: mailto:sebastian.posur@uni-siegen.de Homepage: http://www.uni-siegen.de/fb6/rmi/ Address: Department Mathematik Universität Siegen Walter-Flex-Straße 3 57068 Siegen Germany ------------------------------------------------------- Contents (ModulePresentationsForCAP) 1 Module Presentations 1.1 Functors 1.1-1 FunctorStandardModuleLeft 1.1-2 FunctorStandardModuleRight 1.1-3 FunctorGetRidOfZeroGeneratorsLeft 1.1-4 FunctorGetRidOfZeroGeneratorsRight 1.1-5 FunctorLessGeneratorsLeft 1.1-6 FunctorLessGeneratorsRight 1.1-7 FunctorDualLeft 1.1-8 FunctorDualRight 1.1-9 FunctorDoubleDualLeft 1.1-10 FunctorDoubleDualRight 1.2 GAP Categories 1.2-1 IsLeftOrRightPresentationMorphism 1.2-2 IsLeftPresentationMorphism 1.2-3 IsRightPresentationMorphism 1.2-4 IsLeftOrRightPresentation 1.2-5 IsLeftPresentation 1.2-6 IsRightPresentation 1.3 Constructors 1.3-1 PresentationMorphism 1.3-2 AsMorphismBetweenFreeLeftPresentations 1.3-3 AsMorphismBetweenFreeRightPresentations 1.3-4 AsLeftPresentation 1.3-5 AsRightPresentation 1.3-6 AsLeftOrRightPresentation 1.3-7 FreeLeftPresentation 1.3-8 FreeRightPresentation 1.3-9 UnderlyingMatrix 1.3-10 UnderlyingHomalgRing 1.3-11 Annihilator 1.3-12 LeftPresentations 1.3-13 RightPresentations 1.4 Attributes 1.4-1 UnderlyingHomalgRing 1.4-2 UnderlyingMatrix 1.5 Non-Categorical Operations 1.5-1 StandardGeneratorMorphism 1.5-2 CoverByFreeModule 1.6 Natural Transformations 1.6-1 NaturalIsomorphismFromIdentityToStandardModuleLeft 1.6-2 NaturalIsomorphismFromIdentityToStandardModuleRight 1.6-3 NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft 1.6-4 NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight 1.6-5 NaturalIsomorphismFromIdentityToLessGeneratorsLeft 1.6-6 NaturalIsomorphismFromIdentityToLessGeneratorsRight 1.6-7 NaturalTransformationFromIdentityToDoubleDualLeft 1.6-8 NaturalTransformationFromIdentityToDoubleDualRight 2 Examples and Tests 2.1 Annihilator 2.2 Intersection of Submodules 2.3 Koszul Complex 2.4 Closed Monoidal Structure