3 Toric varieties 3.1 Toric variety: Category and Representations 3.1-1 IsToricVariety IsToricVariety( M )  Category Returns: true or false The GAP category of a toric variety. 3.2 Toric varieties: Properties 3.2-1 IsNormalVariety IsNormalVariety( vari )  property Returns: true or false Checks if the toric variety vari is a normal variety. 3.2-2 IsAffine IsAffine( vari )  property Returns: true or false Checks if the toric variety vari is an affine variety. 3.2-3 IsProjective IsProjective( vari )  property Returns: true or false Checks if the toric variety vari is a projective variety. 3.2-4 IsComplete IsComplete( vari )  property Returns: true or false Checks if the toric variety vari is a complete variety. 3.2-5 IsSmooth IsSmooth( vari )  property Returns: true or false Checks if the toric variety vari is a smooth variety. 3.2-6 HasTorusfactor HasTorusfactor( vari )  property Returns: true or false Checks if the toric variety vari has a torus factor. 3.2-7 HasNoTorusfactor HasNoTorusfactor( vari )  property Returns: true or false Checks if the toric variety vari has no torus factor. 3.2-8 IsOrbifold IsOrbifold( vari )  property Returns: true or false Checks if the toric variety vari has an orbifold, which is, in the toric case, equivalent to the simpliciality of the fan. 3.3 Toric varieties: Attributes 3.3-1 AffineOpenCovering AffineOpenCovering( vari )  attribute Returns: a list Returns a torus invariant affine open covering of the variety vari. The affine open cover is computed out of the cones of the fan. 3.3-2 CoxRing CoxRing( vari )  attribute Returns: a ring Returns the Cox ring of the variety vari. The actual method requires a string with a name for the variables. A method for computing the Cox ring without a variable given is not implemented. You will get an error. 3.3-3 ListOfVariablesOfCoxRing ListOfVariablesOfCoxRing( vari )  attribute Returns: a list Returns a list of the variables of the cox ring of the variety vari. 3.3-4 ClassGroup ClassGroup( vari )  attribute Returns: a module Returns the class group of the variety vari as factor of a free module. 3.3-5 PicardGroup PicardGroup( vari )  attribute Returns: a module Returns the Picard group of the variety vari as factor of a free module. 3.3-6 TorusInvariantDivisorGroup TorusInvariantDivisorGroup( vari )  attribute Returns: a module Returns the subgroup of the Weil divisor group of the variety vari generated by the torus invariant prime divisors. This is always a finitely generated free module over the integers. 3.3-7 MapFromCharacterToPrincipalDivisor MapFromCharacterToPrincipalDivisor( vari )  attribute Returns: a morphism Returns a map which maps an element of the character group into the torus invariant Weil group of the variety vari. This has to viewn as an help method to compute divisor classes. 3.3-8 Dimension Dimension( vari )  attribute Returns: an integer Returns the dimension of the variety vari. 3.3-9 DimensionOfTorusfactor DimensionOfTorusfactor( vari )  attribute Returns: an integer Returns the dimension of the torus factor of the variety vari. 3.3-10 CoordinateRingOfTorus CoordinateRingOfTorus( vari )  attribute Returns: a ring Returns the coordinate ring of the torus of the variety vari. This method is not implemented, you need to call it with a second argument, which is a list of strings for the variables of the ring. 3.3-11 IsProductOf IsProductOf( vari )  attribute Returns: a list If the variety vari is a product of 2 or more varieties, the list contain those varieties. If it is not a product or at least not generated as a product, the list only contains the variety itself. 3.3-12 CharacterLattice CharacterLattice( vari )  attribute Returns: a module The method returns the character lattice of the variety vari, computed as the containing grid of the underlying convex object, if it exists. 3.3-13 TorusInvariantPrimeDivisors TorusInvariantPrimeDivisors( vari )  attribute Returns: a list The method returns a list of the torus invariant prime divisors of the variety vari. 3.3-14 IrrelevantIdeal IrrelevantIdeal( vari )  attribute Returns: an ideal Returns the irrelevant ideal of the cox ring of the variety vari. 3.3-15 MorphismFromCoxVariety MorphismFromCoxVariety( vari )  attribute Returns: a morphism The method returns the quotient morphism from the variety of the Cox ring to the variety vari. 3.3-16 CoxVariety CoxVariety( vari )  attribute Returns: a variety The method returns the Cox variety of the variety vari. 3.3-17 FanOfVariety FanOfVariety( vari )  attribute Returns: a fan Returns the fan of the variety vari. This is set by default. 3.3-18 CartierTorusInvariantDivisorGroup CartierTorusInvariantDivisorGroup( vari )  attribute Returns: a module Returns the the group of Cartier divisors of the variety vari as a subgroup of the divisor group. 3.3-19 NameOfVariety NameOfVariety( vari )  attribute Returns: a string Returns the name of the variety vari if it has one and it is known or can be computed. 3.3-20 twitter twitter( vari )  attribute Returns: a ring This is a dummy to get immediate methods triggered at some times. It never has a value. 3.4 Toric varieties: Methods 3.4-1 UnderlyingSheaf UnderlyingSheaf( vari )  operation Returns: a sheaf The method returns the underlying sheaf of the variety vari. 3.4-2 CoordinateRingOfTorus CoordinateRingOfTorus( vari, vars )  operation Returns: a ring Computes the coordinate ring of the torus of the variety vari with the variables vars. The argument vars need to be a list of strings with length dimension or two times dimension. 3.4-3 \* \*( vari1, vari2 )  operation Returns: a variety Computes the categorial product of the varieties vari1 and vari2. 3.4-4 CharacterToRationalFunction CharacterToRationalFunction( elem, vari )  operation Returns: a homalg element Computes the rational function corresponding to the character grid element elem or to the list of integers elem. To compute rational functions you first need to compute to coordinate ring of the torus of the variety vari. 3.4-5 CoxRing CoxRing( vari, vars )  operation Returns: a ring Computes the Cox ring of the variety vari. vars needs to be a string containing one variable, which will be numbered by the method. 3.4-6 WeilDivisorsOfVariety WeilDivisorsOfVariety( vari )  operation Returns: a list Returns a list of the currently defined Divisors of the toric variety. 3.4-7 Fan Fan( vari )  operation Returns: a fan Returns the fan of the variety vari. This is a rename for FanOfVariety. 3.5 Toric varieties: Constructors 3.5-1 ToricVariety ToricVariety( conv )  operation Returns: a ring Creates a toric variety out of the convex object conv. 3.6 Toric varieties: Examples 3.6-1 The Hirzebruch surface of index 5  Example  gap> H5 := Fan( [[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]] );  gap> H5 := ToricVariety( H5 );  gap> IsComplete( H5 ); true gap> IsAffine( H5 ); false gap> IsOrbifold( H5 ); true gap> IsProjective( H5 ); true gap> TorusInvariantPrimeDivisors(H5); [ ,  ,   ,  ] gap> P := TorusInvariantPrimeDivisors(H5); [ ,  ,   ,   ] gap> A := P[ 1 ] - P[ 2 ] + 4*P[ 3 ];  gap> A;  gap> IsAmple(A); false gap> CoordinateRingOfTorus(H5,"x");; Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 ) gap> D:=CreateDivisor([0,0,0,0],H5);  gap> BasisOfGlobalSections(D); [ |[ 1 ]| ] gap> D:=Sum(P);  gap> BasisOfGlobalSections(D); [ |[ x1_ ]|, |[ x1_*x2 ]|, |[ 1 ]|, |[ x2 ]|,  |[ x1 ]|, |[ x1*x2 ]|, |[ x1^2*x2 ]|,   |[ x1^3*x2 ]|, |[ x1^4*x2 ]|, |[ x1^5*x2 ]|,   |[ x1^6*x2 ]| ] gap> DivisorOfCharacter([1,2],H5);  gap> BasisOfGlobalSections(last); [ |[ x1_*x2_^2 ]| ]