5 Affine toric varieties 5.1 Affine toric varieties: Category and Representations 5.1-1 IsAffineToricVariety IsAffineToricVariety( M )  Category Returns: true or false The GAP category of an affine toric variety. All affine toric varieties are toric varieties, so everything applicable to toric varieties is applicable to affine toric varieties. 5.2 Affine toric varieties: Properties Affine toric varieties have no additional properties. Remember that affine toric varieties are toric varieties, so every property of a toric variety is a property of an affine toric variety. 5.3 Affine toric varieties: Attributes 5.3-1 CoordinateRing CoordinateRing( vari )  attribute Returns: a ring Returns the coordinate ring of the affine toric variety vari. The computation is mainly done in ToricIdeals package. 5.3-2 ListOfVariablesOfCoordinateRing ListOfVariablesOfCoordinateRing( vari )  attribute Returns: a list Returns a list containing the variables of the CoordinateRing of the variety vari. 5.3-3 MorphismFromCoordinateRingToCoordinateRingOfTorus MorphismFromCoordinateRingToCoordinateRingOfTorus( vari )  attribute Returns: a morphism Returns the morphism between the coordinate ring of the variety vari and the coordinate ring of its torus. This defines the embedding of the torus in the variety. 5.3-4 ConeOfVariety ConeOfVariety( vari )  attribute Returns: a cone Returns the cone ring of the affine toric variety vari. 5.4 Affine toric varieties: Methods 5.4-1 CoordinateRing CoordinateRing( vari, indet )  operation Returns: a variety Computes the coordinate ring of the affine toric variety vari with indeterminates indet. 5.4-2 Cone Cone( vari )  operation Returns: a cone Returns the cone of the variety vari. Another name for ConeOfVariety for compatibility and shortness. 5.5 Affine toric varieties: Constructors The constructors are the same as for toric varieties. Calling them with a cone will result in an affine variety. 5.6 Affine toric Varieties: Examples 5.6-1 Affine space  Example  gap> C:=Cone( [[1,0,0],[0,1,0],[0,0,1]] );  gap> C3:=ToricVariety(C);  gap> Dimension(C3); 3 gap> IsOrbifold(C3); true gap> IsSmooth(C3); true gap> CoordinateRingOfTorus(C3,"x"); Q[x1,x1_,x2,x2_,x3,x3_]/( x3*x3_-1, x2*x2_-1, x1*x1_-1 ) gap> CoordinateRing(C3,"x"); Q[x_1,x_2,x_3] gap> MorphismFromCoordinateRingToCoordinateRingOfTorus(C3);  gap> C3;  gap> StructureDescription(C3); "|A^3"