References [And00] Andaloro, P., On Total Stopping Times under 3x+1 Iteration, Fibonacci Quarterly, 38 (2000), 73-78. [Bar15] Bartholdi, L.,  FR -- Computations with functionally recursive groups. Version 2.2.1  (2015), (( GAP package, http://www.gap-system.org/Packages/fr.html )). [dlH00] de la Harpe, P., Topics in Geometric Group Theory, Chicago Lectures in Mathematics (2000). [EHN13] Eick, B., Horn, M. and Nickel, W.,  Polycyclic -- Computation with polycyclic groups (Version 2.11)  (2013), (( GAP package, http://www.gap-system.org/Packages/polycyclic.html )). [GKW16] Gutsche, S., Kohl, S. and Wensley, C.,  Utils - Utility functions in GAP (Version 0.38)  (2016), (( GAP package, http://www.gap-system.org/Packages/utils.html )). [Gri80] Grigorchuk, R. I., Burnside's Problem on Periodic Groups, Functional Anal. Appl., 14 (1980), 41-43. [GT02] Gluck, D. and Taylor, B. D., A New Statistic for the 3x+1 Problem, Proc. Amer. Math. Soc., 130, 5 (2002), 1293-1301. [HEO05] Holt, D. F., Eick, B. and O'Brien, E. A., Handbook of Computational Group Theory, Chapman & Hall / CRC, Boca Raton, FL, Discrete Mathematics and its Applications (Boca Raton) (2005), xvi+514 pages. [Hig74] Higman, G., Finitely Presented Infinite Simple Groups, Department of Pure Mathematics, Australian National University, Canberra, Notes on Pure Mathematics (1974). [Kel99] Keller, T. P., Finite Cycles of Certain Periodically Linear Permutations, Missouri J. Math. Sci., 11, 3 (1999), 152-157. [Koh05] Kohl, S., Restklassenweise affine Gruppen, Dissertation, Universität Stuttgart (2005), ((http://d-nb.info/977164071)). [Koh07a] Kohl, S.,  Graph Theoretical Criteria for the Wildness of Residue-Class-Wise Affine Permutations  (2007), (( Preprint (short note), http://www.gap-system.org/DevelopersPages/StefanKohl/preprints/graphcrit.pdf )). [Koh07b] Kohl, S.,  Wildness of Iteration of Certain Residue-Class-Wise Affine Mappings , Adv. in Appl. Math., 39, 3 (2007), 322-328, ((DOI: 10.1016/j.aam.2006.08.003)). [Koh08] Kohl, S.,  Algorithms for a Class of Infinite Permutation Groups , J. Symb. Comput., 43, 8 (2008), 545-581, ((DOI: 10.1016/j.jsc.2007.12.001)). [Koh10] Kohl, S.,  A Simple Group Generated by Involutions Interchanging Residue Classes of the Integers , Math. Z., 264, 4 (2010), 927-938, ((DOI: 10.1007/s00209-009-0497-8)). [Koh13] Kohl, S.,  Simple Groups Generated by Involutions Interchanging Residue Classes Modulo Lattices in Z^d , J. Group Theory, 16, 1 (2013), 81-86, ((DOI: 10.1515/jgt-2012-0031)). [Lag03] Lagarias, J. C., The 3x+1 Problem: An Annotated Bibliography (2003+), (( http://arxiv.org/abs/math.NT/0309224 (Part I), http://arxiv.org/abs/math.NT/0608208 (Part II) )). [LN12] Lübeck, F. and Neunhöffer, M., GAPDoc (Version 1.5.1), RWTH Aachen (2012), (( GAP package, http://www.gap-system.org/Packages/gapdoc.html )). [ML87] Matthews, K. R. and Leigh, G. M.,  A Generalization of the Syracuse Algorithm in GF(q)[x] , J. Number Theory, 25 (1987), 274-278. [Soi16] Soicher, L., GRAPE -- GRaph Algorithms using PErmutation groups (Version 4.7), Queen Mary, University of London (2016), (( GAP package, http://www.gap-system.org/Packages/grape.html )).