Consider the following maps of polynomials \(S:\mathcal{P}\rightarrow\mathcal{P}\) and \(T:\mathcal{P}\rightarrow\mathcal{P}\) defined by

\[ S(g(x))= -3 \, g\left(1\right) + 5 \, g\left(x^{2}\right) \hspace{1em} \text{and} \hspace{1em} T(g(x))= -3 \, g\left(x\right)^{3} - 2 \, g'\left(x\right) \]

Explain why one these maps is a linear transformation and why the other map is not.

Answer:

\(S\) is linear and \(T\) is not linear.