1. Find the standard matrix for the linear transformation \(S:\mathbb{R}^ 4 \to \mathbb{R}^ 2 \) given by

    \[S\left( \left[\begin{array}{c} x \\ y \\ z \\ {w} \end{array}\right] \right) = \left[\begin{array}{c} -2 \, x + y - 2 \, {w} \\ x - y \end{array}\right] .\]

  2. Let \(T:\mathbb{R}^ 4 \to \mathbb{R}^ 1 \) be the linear transformation given by the standard matrix

    \[ \left[\begin{array}{cccc} 1 & -1 & -2 & -1 \end{array}\right] .\]

    Compute \(T\left( \left[\begin{array}{c} 6 \\ -3 \\ 5 \\ -7 \end{array}\right] \right)\).

Answer:

  1. \[ \left[\begin{array}{cccc} -2 & 1 & 0 & -2 \\ 1 & -1 & 0 & 0 \end{array}\right] \]

  2. \[T\left( \left[\begin{array}{c} 6 \\ -3 \\ 5 \\ -7 \end{array}\right] \right)= \left[\begin{array}{c} 6 \end{array}\right] \]