1. Find the standard matrix for the linear transformation \(S:\mathbb{R}^ 2 \to \mathbb{R}^ 4 \) given by

    \[S\left( \left[\begin{array}{c} x \\ y \end{array}\right] \right) = \left[\begin{array}{c} x - y \\ 3 \, x - 2 \, y \\ -3 \, x + 3 \, y \\ -x - y \end{array}\right] .\]

  2. Let \(T:\mathbb{R}^ 3 \to \mathbb{R}^ 4 \) be the linear transformation given by the standard matrix

    \[ \left[\begin{array}{ccc} -1 & -1 & 0 \\ -2 & -3 & -7 \\ -2 & -3 & -6 \\ 1 & 1 & 5 \end{array}\right] .\]

    Compute \(T\left( \left[\begin{array}{c} 7 \\ 8 \\ 0 \end{array}\right] \right)\).

Answer:

  1. \[ \left[\begin{array}{cc} 1 & -1 \\ 3 & -2 \\ -3 & 3 \\ -1 & -1 \end{array}\right] \]

  2. \[T\left( \left[\begin{array}{c} 7 \\ 8 \\ 0 \end{array}\right] \right)= \left[\begin{array}{c} -15 \\ -38 \\ -38 \\ 15 \end{array}\right] \]