1. Find the standard matrix for the linear transformation \(S:\mathbb{R}^ 3 \to \mathbb{R}^ 3 \) given by

    \[S\left( \left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right] \right) = \left[\begin{array}{c} x_{2} + x_{3} \\ -x_{1} - 5 \, x_{3} \\ -x_{1} - 3 \, x_{2} - 7 \, x_{3} \end{array}\right] .\]

  2. Let \(T:\mathbb{R}^ 4 \to \mathbb{R}^ 1 \) be the linear transformation given by the standard matrix

    \[ \left[\begin{array}{cccc} 1 & 1 & 2 & 1 \end{array}\right] .\]

    Compute \(T\left( \left[\begin{array}{c} 8 \\ 8 \\ 8 \\ 1 \end{array}\right] \right)\).

Answer:

  1. \[ \left[\begin{array}{ccc} 0 & 1 & 1 \\ -1 & 0 & -5 \\ -1 & -3 & -7 \end{array}\right] \]

  2. \[T\left( \left[\begin{array}{c} 8 \\ 8 \\ 8 \\ 1 \end{array}\right] \right)= \left[\begin{array}{c} 33 \end{array}\right] \]