1. Find the standard matrix for the linear transformation \(S:\mathbb{R}^ 4 \to \mathbb{R}^ 2 \) given by

    \[S\left( \left[\begin{array}{c} x \\ y \\ z \\ {w} \end{array}\right] \right) = \left[\begin{array}{c} x - 3 \, y + 5 \, z - 4 \, {w} \\ x - 2 \, y + 4 \, z - 3 \, {w} \end{array}\right] .\]

  2. Let \(T:\mathbb{R}^ 4 \to \mathbb{R}^ 2 \) be the linear transformation given by the standard matrix

    \[ \left[\begin{array}{cccc} 1 & -2 & -4 & 3 \\ -1 & 3 & 6 & -4 \end{array}\right] .\]

    Compute \(T\left( \left[\begin{array}{c} -5 \\ -5 \\ -3 \\ -6 \end{array}\right] \right)\).

Answer:

  1. \[ \left[\begin{array}{cccc} 1 & -3 & 5 & -4 \\ 1 & -2 & 4 & -3 \end{array}\right] \]

  2. \[T\left( \left[\begin{array}{c} -5 \\ -5 \\ -3 \\ -6 \end{array}\right] \right)= \left[\begin{array}{c} -1 \\ -4 \end{array}\right] \]