\[T\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right) = \left[\begin{array}{c} x + 3 \, y - z \\ -3 \, x - 8 \, y + 2 \, z \\ -4 \, x - 8 \, y \\ -x - 7 \, y + 5 \, z \end{array}\right] .\]
Answer:
\[\operatorname{RREF} \left[\begin{array}{ccc} 1 & 3 & -1 \\ -3 & -8 & 2 \\ -4 & -8 & 0 \\ -1 & -7 & 5 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \]
\[\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c} 1 \\ -3 \\ -4 \\ -1 \end{array}\right] , \left[\begin{array}{c} 3 \\ -8 \\ -8 \\ -7 \end{array}\right] \right\} \]
\[\operatorname{ker}\ T = \left\{ \left[\begin{array}{c} -2 \, a \\ a \\ a \end{array}\right] \middle|\,a\in\mathbb{R}\right\} \]