\[T\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right) = \left[\begin{array}{c} 3 \, x + 2 \, y - 3 \, z \\ -3 \, x - 2 \, y + 3 \, z \\ 2 \, x + y - z \\ x - y + 4 \, z \end{array}\right] .\]
Answer:
\[\operatorname{RREF} \left[\begin{array}{ccc} 3 & 2 & -3 \\ -3 & -2 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 4 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \]
\[\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c} 3 \\ -3 \\ 2 \\ 1 \end{array}\right] , \left[\begin{array}{c} 2 \\ -2 \\ 1 \\ -1 \end{array}\right] \right\} \]
\[\operatorname{ker}\ T = \left\{ \left[\begin{array}{c} -a \\ 3 \, a \\ a \end{array}\right] \middle|\,a\in\mathbb{R}\right\} \]