\[T\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right) = \left[\begin{array}{c} x - z \\ -2 \, x + y + z \\ -5 \, x + 3 \, y + 2 \, z \\ -2 \, x - 2 \, y + 4 \, z \end{array}\right] .\]
Answer:
\[\operatorname{RREF} \left[\begin{array}{ccc} 1 & 0 & -1 \\ -2 & 1 & 1 \\ -5 & 3 & 2 \\ -2 & -2 & 4 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \]
\[\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c} 1 \\ -2 \\ -5 \\ -2 \end{array}\right] , \left[\begin{array}{c} 0 \\ 1 \\ 3 \\ -2 \end{array}\right] \right\} \]
\[\operatorname{ker}\ T = \left\{ \left[\begin{array}{c} a \\ a \\ a \end{array}\right] \middle|\,a\in\mathbb{R}\right\} \]