\[T\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right) = \left[\begin{array}{c} -x - 4 \, y + 5 \, z \\ -x - 4 \, y + 3 \, z \\ -2 \, x - 8 \, y + 7 \, z \\ x + 4 \, y - 5 \, z \end{array}\right] .\]
Answer:
\[\operatorname{RREF} \left[\begin{array}{ccc} -1 & -4 & 5 \\ -1 & -4 & 3 \\ -2 & -8 & 7 \\ 1 & 4 & -5 \end{array}\right] = \left[\begin{array}{ccc} 1 & 4 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \]
\[\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c} -1 \\ -1 \\ -2 \\ 1 \end{array}\right] , \left[\begin{array}{c} 5 \\ 3 \\ 7 \\ -5 \end{array}\right] \right\} \]
\[\operatorname{ker}\ T = \left\{ \left[\begin{array}{c} -4 \, a \\ a \\ 0 \end{array}\right] \middle|\,a\in\mathbb{R}\right\} \]