\[T\left( \left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right] \right) = \left[\begin{array}{c} -3 \, x_{1} + 5 \, x_{2} + 4 \, x_{3} \\ 4 \, x_{1} - 7 \, x_{2} - 6 \, x_{3} \\ -x_{1} + x_{2} \\ 4 \, x_{1} - 4 \, x_{2} \end{array}\right] .\]
Answer:
\[\operatorname{RREF} \left[\begin{array}{ccc} -3 & 5 & 4 \\ 4 & -7 & -6 \\ -1 & 1 & 0 \\ 4 & -4 & 0 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \]
\[\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c} -3 \\ 4 \\ -1 \\ 4 \end{array}\right] , \left[\begin{array}{c} 5 \\ -7 \\ 1 \\ -4 \end{array}\right] \right\} \]
\[\operatorname{ker}\ T = \left\{ \left[\begin{array}{c} -2 \, a \\ -2 \, a \\ a \end{array}\right] \middle|\,a\in\mathbb{R}\right\} \]