\[T\left( \left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right] \right) = \left[\begin{array}{c} -2 \, x_{1} + 4 \, x_{2} + 2 \, x_{3} \\ -x_{1} - 3 \, x_{2} - 4 \, x_{3} \\ -x_{1} + x_{2} \\ x_{1} + x_{3} \end{array}\right] .\]
Answer:
\[\operatorname{RREF} \left[\begin{array}{ccc} -2 & 4 & 2 \\ -1 & -3 & -4 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \]
\[\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c} -2 \\ -1 \\ -1 \\ 1 \end{array}\right] , \left[\begin{array}{c} 4 \\ -3 \\ 1 \\ 0 \end{array}\right] \right\} \]
\[\operatorname{ker}\ T = \left\{ \left[\begin{array}{c} -a \\ -a \\ a \end{array}\right] \middle|\,a\in\mathbb{R}\right\} \]