\[T\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right) = \left[\begin{array}{c} 4 \, x + 5 \, y - 3 \, z \\ 4 \, x + y - 7 \, z \\ 5 \, x + 3 \, y - 7 \, z \\ 3 \, x + 5 \, y - z \end{array}\right] .\]
Answer:
\[\operatorname{RREF} \left[\begin{array}{ccc} 4 & 5 & -3 \\ 4 & 1 & -7 \\ 5 & 3 & -7 \\ 3 & 5 & -1 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \]
\[\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c} 4 \\ 4 \\ 5 \\ 3 \end{array}\right] , \left[\begin{array}{c} 5 \\ 1 \\ 3 \\ 5 \end{array}\right] \right\} \]
\[\operatorname{ker}\ T = \left\{ \left[\begin{array}{c} 2 \, a \\ -a \\ a \end{array}\right] \middle|\,a\in\mathbb{R}\right\} \]