1. Show that

    \[\operatorname{RREF} \left[\begin{array}{ccc} 3 & -10 & 0 \\ -2 & 7 & 0 \\ 1 & 2 & 0 \\ 2 & -7 & 0 \\ 3 & -9 & 0 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] .\]

  2. Explain why the matrix \(B= \left[\begin{array}{ccc} 1 & 0 & -2 \\ -2 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \) is or is not in reduced row echelon form.

Answer:

  1. \(\operatorname{RREF} \left[\begin{array}{ccc} 3 & -10 & 0 \\ -2 & 7 & 0 \\ 1 & 2 & 0 \\ 2 & -7 & 0 \\ 3 & -9 & 0 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] .\)
  2. \(B\) is not in reduced row echelon form because not every entry above and below each pivot is zero.