Explain how to find a basis for the eigenspace associated to the eigenvalue \( 2 \) in the matrix

\[ \left[\begin{array}{cccc} 4 & 8 & 1 & -4 \\ 2 & 10 & -1 & -4 \\ 1 & 4 & -1 & -2 \\ -1 & -4 & -2 & 4 \end{array}\right] \]

Answer:

\[\operatorname{RREF} \left[\begin{array}{cccc} 2 & 8 & 1 & -4 \\ 2 & 8 & -1 & -4 \\ 1 & 4 & -3 & -2 \\ -1 & -4 & -2 & 2 \end{array}\right] = \left[\begin{array}{cccc} 1 & 4 & 0 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \]

A basis of the eigenspace is \( \left\{ \left[\begin{array}{c} -4 \\ 1 \\ 0 \\ 0 \end{array}\right] , \left[\begin{array}{c} 2 \\ 0 \\ 0 \\ 1 \end{array}\right] \right\} \).