Consider the following statement.

  1. Write an equivalent statement using a vector equation.
  2. Explain why your statement is true or false.

Answer:

\[\operatorname{RREF} \left[\begin{array}{cccc|c} 0 & -2 & -2 & -4 & -1 \\ -1 & -3 & -1 & -3 & -9 \\ 1 & -1 & -3 & -5 & 6 \\ 0 & 2 & 2 & 4 & 9 \end{array}\right] = \left[\begin{array}{cccc|c} 1 & 0 & -2 & -3 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \]

  1. The vector equation \( x_{1} \left[\begin{array}{c} 0 \\ -1 \\ 1 \\ 0 \end{array}\right] + x_{2} \left[\begin{array}{c} -2 \\ -3 \\ -1 \\ 2 \end{array}\right] + x_{3} \left[\begin{array}{c} -2 \\ -1 \\ -3 \\ 2 \end{array}\right] + x_{4} \left[\begin{array}{c} -4 \\ -3 \\ -5 \\ 4 \end{array}\right] = \left[\begin{array}{c} -1 \\ -9 \\ 6 \\ 9 \end{array}\right] \)has no solutions.
  2. \( \left[\begin{array}{c} -1 \\ -9 \\ 6 \\ 9 \end{array}\right] \) is not a linear combination of the vectors \( \left[\begin{array}{c} 0 \\ -1 \\ 1 \\ 0 \end{array}\right] , \left[\begin{array}{c} -2 \\ -3 \\ -1 \\ 2 \end{array}\right] , \left[\begin{array}{c} -2 \\ -1 \\ -3 \\ 2 \end{array}\right] , \text{ and } \left[\begin{array}{c} -4 \\ -3 \\ -5 \\ 4 \end{array}\right] \).