%matplotlib inline
import pandas as pd
data = pd.read_csv('aggregated_PV_data.csv', parse_dates=True, index_col=0)
data.head()
data.plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['111'].plot(legend = False, figsize=(16, 8))
data['112'].plot(legend = False, figsize=(16, 8))
data['113'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['121'].plot(legend = False, figsize=(16, 8))
data['122'].plot(legend = False, figsize=(16, 8))
data['123'].plot(legend = False, figsize=(16, 8))
data['124'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['131'].plot(legend = False, figsize=(16, 8))
data['132'].plot(legend = False, figsize=(16, 8))
data['133'].plot(legend = False, figsize=(16, 8))
data['134'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['141'].plot(legend = False, figsize=(16, 8))
data['142'].plot(legend = False, figsize=(16, 8))
data['143'].plot(legend = False, figsize=(16, 8))
data['144'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['151'].plot(legend = False, figsize=(16, 8))
data['152'].plot(legend = False, figsize=(16, 8))
data['153'].plot(legend = False, figsize=(16, 8))
data['154'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['161'].plot(legend = False, figsize=(16, 8))
data['162'].plot(legend = False, figsize=(16, 8))
data['163'].plot(legend = False, figsize=(16, 8))
data['164'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['171'].plot(legend = False, figsize=(16, 8))
data['172'].plot(legend = False, figsize=(16, 8))
data['173'].plot(legend = False, figsize=(16, 8))
data['174'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['181'].plot(legend = False, figsize=(16, 8))
data['182'].plot(legend = False, figsize=(16, 8))
data['183'].plot(legend = False, figsize=(16, 8))
data['184'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['191'].plot(legend = False, figsize=(16, 8))
data['192'].plot(legend = False, figsize=(16, 8))
data['193'].plot(legend = False, figsize=(16, 8))
data['194'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['201'].plot(legend = False, figsize=(16, 8))
data['202'].plot(legend = False, figsize=(16, 8))
data['203'].plot(legend = False, figsize=(16, 8))
data['204'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['221'].plot(legend = False, figsize=(16, 8))
data['222'].plot(legend = False, figsize=(16, 8))
data['223'].plot(legend = False, figsize=(16, 8))
data['224'].plot(legend = False, figsize=(16, 8))
141 had 350, 7 times avg. 144 flat 0 energy 151-154 had issues, 2 0 energy usage, 2 had 350+ 202 had 250, 5 times avg. 223 at 0 energy use
Average energy use seems to fall in the shape of a double bell curve with two maximum usage groups centered around 70 and 35
%matplotlib inline
data['181'].diff()
import matplotlib
matplotlib.use('nbagg')
import matplotlib.pyplot as plt
^ We were trying to import Python script in order to find the means of a couple of data points, but it did not work. ^
%matplotlib.plt
data['111'].plot(legend = False, figsize=(16, 8))
data['112'].plot(legend = False, figsize=(16, 8))
data['113'].plot(legend = False, figsize=(16, 8))
data['114'].plot(legend = False, figsize=(16, 8))
data['121'].plot(legend = False, figsize=(16, 8))
data['122'].plot(legend = False, figsize=(16, 8))
data['123'].plot(legend = False, figsize=(16, 8))
data['124'].plot(legend = False, figsize=(16, 8))
data['131'].plot(legend = False, figsize=(16, 8))
data['132'].plot(legend = False, figsize=(16, 8))
data['133'].plot(legend = False, figsize=(16, 8))
data['134'].plot(legend = False, figsize=(16, 8))
data['142'].plot(legend = False, figsize=(16, 8))
data['143'].plot(legend = False, figsize=(16, 8))
data['171'].plot(legend = False, figsize=(16, 8))
data['172'].plot(legend = False, figsize=(16, 8))
data['173'].plot(legend = False, figsize=(16, 8))
data['174'].plot(legend = False, figsize=(16, 8))
data['181'].plot(legend = False, figsize=(16, 8))
data['182'].plot(legend = False, figsize=(16, 8))
data['183'].plot(legend = False, figsize=(16, 8))
data['184'].plot(legend = False, figsize=(16, 8))
data['191'].plot(legend = False, figsize=(16, 8))
data['192'].plot(legend = False, figsize=(16, 8))
data['193'].plot(legend = False, figsize=(16, 8))
data['194'].plot(legend = False, figsize=(16, 8))
data['201'].plot(legend = False, figsize=(16, 8))
data['203'].plot(legend = False, figsize=(16, 8))
data['204'].plot(legend = False, figsize=(16, 8))
data['221'].plot(legend = False, figsize=(16, 8))
data['222'].plot(legend = False, figsize=(16, 8))
data['224'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['113'].diff(1)['2016-03-01':'2016-03-05'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['113'].diff(1)['2016-03-05':'2016-03-10'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['113'].diff(1)['2016-03-10':'2016-03-15'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['113'].diff(1)['2016-03-20':'2016-03-25'].plot(legend = False, figsize=(16, 8))
.001*1000
%matplotlib inline
data['111'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['153'].diff(1)['2016-08-10':'2016-08-15'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['113'].diff(1)['2016-08-10':'2016-08-12'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['141'].diff(1)['2016-06-10':'2016-06-15'].plot(legend = False, figsize=(16, 8))
%matplotlib inline
data['141'].diff(1)['2016-05-10':'2016-05-12'].plot(legend = False, figsize=(16, 8))
%matplotlib.plt
data['111']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['112']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['113']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['114']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['121']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['122']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['123']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['124']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['131']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['132']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['133']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['134']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['142']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['143']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['171']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['172']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['173']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['174']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['181']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['182']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['183']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['184']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['191']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['192']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['193']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['194']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['201']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['203']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['204']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['221']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['222']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['224']['2016-09-17':'2016-09-19'].plot(legend = False, figsize=(16, 8))
from IPython.display import Image
Image("eq1140301_2.png")
from IPython.display import Image
Image("eq5_9.png")
%matplotlib.plt
data['111']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['112']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['113']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['114']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['121']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['122']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['123']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['124']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['131']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['132']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['133']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['134']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['142']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['143']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['171']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['172']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['173']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['174']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['181']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['182']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['183']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['184']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['191']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['192']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['193']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['194']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['201']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['203']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['204']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['221']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['222']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
data['224']['2016-05-18':'2016-05-19'].plot(legend = False, figsize=(16, 8))
small minute long outages, possibly eq relateed but very very minimal
%matplotlib.plt
data['111']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['112']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['113']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['114']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['121']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['122']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['123']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['124']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['131']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['132']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['133']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['134']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['142']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['143']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['171']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['172']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['173']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['174']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['181']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['182']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['183']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['184']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['191']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['192']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['193']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['194']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['201']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['203']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['204']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['221']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['222']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
data['224']['2016-09-20':'2016-09-22'].plot(legend = False, figsize=(16, 8))
%matplotlib.plt
data['111']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['112']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['113']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['114']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['121']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['122']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['123']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['124']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['131']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['132']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['133']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['134']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['142']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['143']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['171']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['172']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['173']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['174']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['181']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['182']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['183']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['184']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['191']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['192']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['193']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['194']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['201']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['203']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['204']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['221']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['222']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
data['224']['2016-09-10':'2016-09-19'].plot(legend = False, figsize=(16, 8))
%matplotlib.plt
data['111'].plot(legend = False, figsize=(16, 8))
Major earthquake we had to find actual timestamp as different weather data was in greenich mean time vs. our local time. none the less the grid was resiliant during the 18th and 19th during the powerful earthquake.
%matplotlib.plt
data['111']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['112']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['113']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['114']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['121']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['122']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['123']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['124']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['131']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['132']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['133']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['134']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['142']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['143']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['171']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['172']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['173']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['174']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['181']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['182']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['183']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['184']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['191']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['192']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['193']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['194']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['201']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['203']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['204']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['221']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['222']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
data['224']['2016-10-18':'2016-10-23'].plot(legend = False, figsize=(16, 8))
We found that there was 0 sunlight for octobor 18th 2016 which corrosponds to the outages on the 19
data['154'].plot(legend = False, figsize=(16, 8))
http://earthquaketrack.com/id-36-jayapura/recent
average of over 40 a year
%matplotlib.plt
data['111']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['112']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['113']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['114']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['121']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['122']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['123']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['124']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['131']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['132']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['133']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['134']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['142']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['143']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['171']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['172']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['173']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['174']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['181']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['182']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['183']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['184']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['191']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['192']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['193']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['194']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['201']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['203']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['204']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['221']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['222']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
data['224']['2016-12-04':'2016-12-07'].plot(legend = False, figsize=(16, 8))
%matplot.plt
data['123']['2016-12-04':'2016-12-10'].plot(legend = False, figsize=(16, 8))
data['124']['2016-12-04':'2016-12-10'].plot(legend = False, figsize=(16, 8))
data['131']['2016-12-04':'2016-12-10'].plot(legend = False, figsize=(16, 8))
data['132']['2016-12-04':'2016-12-10'].plot(legend = False, figsize=(16, 8))
data['133']['2016-12-04':'2016-12-10'].plot(legend = False, figsize=(16, 8))
data['134']['2016-12-04':'2016-12-10'].plot(legend = False, figsize=(16, 8))
#NO DECEMBER DATA
%matplotlib.plt
data['111']['2016-12-02':'2016-12-22'].plot(legend = False, figsize=(16, 8))
data['112']['2016-12-02':'2016-12-22'].plot(legend = False, figsize=(16, 8))
data['113']['2016-12-02':'2016-12-22'].plot(legend = False, figsize=(16, 8))
Avergae of 45 eq's per yr in Lake Sentani area over 4.5 magnitude'
True average of mean for overall daily avg power usage per household below
44.25+75.54+42.55+14.83+19.41+7.34+75.96+8.29+33+61.27+72.261+314.59+104.03+51.76+99.24+201.67+9.17+16.97+28.93+72.78+26.92+29.74+10.3+10.8+54.1+62.51+45.36+56.57+18.4+26.35+49.87+55.93+3.83+241.49+25.7+27.31+20.79+35.39+27.72+20.79+35.39+27.72+41.71+51.54+20.07+27.65
2407.790999999993/43
55.99513953488/337
0.166157 kwh avg per day per household. = 166 watts a day. (not including smallest outliers under 1kwh)
Sources Cited:
"The Role of Microgrids in Helping to Advance the Nation's Energy System." The Role of Microgrids in Helping to Advance the Nation's Energy System | Department of Energy. US Department of Energy, n.d. Web. 21 Apr. 2017. https://energy.gov/oe/services/technology-development/smart-grid/role-microgrids-helping-advance-nation-s-energy-system
"An Earthquake of Magnitude 5.9 Occurred in Indonesia." Earth Chronicles News. N.p., n.d. Web. 21 Apr. 2017. http://earth-chronicles.com/natural-catastrophe/an-earthquake-of-magnitude-5-9-occurred-in-indonesia-2.html
GDACS. "Mw 5.5 Earthquake, Green Alert in Indonesia." Overall Green Earthquake Alert in Indonesia on 18 Sep 2016 07:17 UTC. GDACS, 18 Sept. 2016. Web. 21 Apr. 2017. http://www.gdacs.org/report.aspx?eventtype=EQ&eventid=1094162
"Past Weather in Jakarta, Jakarta Special Capital Region, Indonesia - October 2016."Timeanddate.com. Timeanddate, n.d. Web. 21 Apr. 2017. https://www.timeanddate.com/weather/indonesia/jakarta/historic?month=10&year=2016
Acknowledgements This work funded by the CSU CALL Grants Professor Soto